Abstract:Recent advances in neural camera imaging pipelines have demonstrated notable progress. Nevertheless, the real-world imaging pipeline still faces challenges including the lack of joint optimization in system components, computational redundancies, and optical distortions such as lens shading.In light of this, we propose an end-to-end camera imaging pipeline (RealCamNet) to enhance real-world camera imaging performance. Our methodology diverges from conventional, fragmented multi-stage image signal processing towards end-to-end architecture. This architecture facilitates joint optimization across the full pipeline and the restoration of coordinate-biased distortions. RealCamNet is designed for high-quality conversion from RAW to RGB and compact image compression. Specifically, we deeply analyze coordinate-dependent optical distortions, e.g., vignetting and dark shading, and design a novel Coordinate-Aware Distortion Restoration (CADR) module to restore coordinate-biased distortions. Furthermore, we propose a Coordinate-Independent Mapping Compression (CIMC) module to implement tone mapping and redundant information compression. Existing datasets suffer from misalignment and overly idealized conditions, making them inadequate for training real-world imaging pipelines. Therefore, we collected a real-world imaging dataset. Experiment results show that RealCamNet achieves the best rate-distortion performance with lower inference latency.
Abstract:The rise of HDR-WCG display devices has highlighted the need to convert SDRTV to HDRTV, as most video sources are still in SDR. Existing methods primarily focus on designing neural networks to learn a single-style mapping from SDRTV to HDRTV. However, the limited information in SDRTV and the diversity of styles in real-world conversions render this process an ill-posed problem, thereby constraining the performance and generalization of these methods. Inspired by generative approaches, we propose a novel method for SDRTV to HDRTV conversion guided by real HDRTV priors. Despite the limited information in SDRTV, introducing real HDRTV as reference priors significantly constrains the solution space of the originally high-dimensional ill-posed problem. This shift transforms the task from solving an unreferenced prediction problem to making a referenced selection, thereby markedly enhancing the accuracy and reliability of the conversion process. Specifically, our approach comprises two stages: the first stage employs a Vector Quantized Generative Adversarial Network to capture HDRTV priors, while the second stage matches these priors to the input SDRTV content to recover realistic HDRTV outputs. We evaluate our method on public datasets, demonstrating its effectiveness with significant improvements in both objective and subjective metrics across real and synthetic datasets.
Abstract:Multiple complex degradations are coupled in low-quality video faces in the real world. Therefore, blind video face restoration is a highly challenging ill-posed problem, requiring not only hallucinating high-fidelity details but also enhancing temporal coherence across diverse pose variations. Restoring each frame independently in a naive manner inevitably introduces temporal incoherence and artifacts from pose changes and keypoint localization errors. To address this, we propose the first blind video face restoration approach with a novel parsing-guided temporal-coherent transformer (PGTFormer) without pre-alignment. PGTFormer leverages semantic parsing guidance to select optimal face priors for generating temporally coherent artifact-free results. Specifically, we pre-train a temporal-spatial vector quantized auto-encoder on high-quality video face datasets to extract expressive context-rich priors. Then, the temporal parse-guided codebook predictor (TPCP) restores faces in different poses based on face parsing context cues without performing face pre-alignment. This strategy reduces artifacts and mitigates jitter caused by cumulative errors from face pre-alignment. Finally, the temporal fidelity regulator (TFR) enhances fidelity through temporal feature interaction and improves video temporal consistency. Extensive experiments on face videos show that our method outperforms previous face restoration baselines. The code will be released on \href{https://github.com/kepengxu/PGTFormer}{https://github.com/kepengxu/PGTFormer}.
Abstract:Recently, the transformation of standard dynamic range TV (SDRTV) to high dynamic range TV (HDRTV) is in high demand due to the scarcity of HDRTV content. However, the conversion of SDRTV to HDRTV often amplifies the existing coding artifacts in SDRTV which deteriorate the visual quality of the output. In this study, we propose a dual inverse degradation SDRTV-to-HDRTV network DIDNet to address the issue of coding artifact restoration in converted HDRTV, which has not been previously studied. Specifically, we propose a temporal-spatial feature alignment module and dual modulation convolution to remove coding artifacts and enhance color restoration ability. Furthermore, a wavelet attention module is proposed to improve SDRTV features in the frequency domain. An auxiliary loss is introduced to decouple the learning process for effectively restoring from dual degradation. The proposed method outperforms the current state-of-the-art method in terms of quantitative results, visual quality, and inference times, thus enhancing the performance of the SDRTV-to-HDRTV method in real-world scenarios.
Abstract:HDR(High Dynamic Range) video can reproduce realistic scenes more realistically, with a wider gamut and broader brightness range. HDR video resources are still scarce, and most videos are still stored in SDR (Standard Dynamic Range) format. Therefore, SDRTV-to-HDRTV Conversion (SDR video to HDR video) can significantly enhance the user's video viewing experience. Since the correlation between adjacent video frames is very high, the method utilizing the information of multiple frames can improve the quality of the converted HDRTV. Therefore, we propose a multi-frame fusion neural network \textbf{DSLNet} for SDRTV to HDRTV conversion. We first propose a dynamic spatial-temporal feature alignment module \textbf{DMFA}, which can align and fuse multi-frame. Then a novel spatial-temporal feature modulation module \textbf{STFM}, STFM extracts spatial-temporal information of adjacent frames for more accurate feature modulation. Finally, we design a quality enhancement module \textbf{LKQE} with large kernels, which can enhance the quality of generated HDR videos. To evaluate the performance of the proposed method, we construct a corresponding multi-frame dataset using HDR video of the HDR10 standard to conduct a comprehensive evaluation of different methods. The experimental results show that our method obtains state-of-the-art performance. The dataset and code will be released.
Abstract:Recent development of neural vocoders based on the generative adversarial neural network (GAN) has shown their advantages of generating raw waveform conditioned on mel-spectrogram with fast inference speed and lightweight networks. Whereas, it is still challenging to train a universal neural vocoder that can synthesize high-fidelity speech from various scenarios with unseen speakers, languages, and speaking styles. In this paper, we propose DSPGAN, a GAN-based universal vocoder for high-fidelity speech synthesis by applying the time-frequency domain supervision from digital signal processing (DSP). To eliminate the mismatch problem caused by the ground-truth spectrograms in training phase and the predicted spectrograms in inference phase, we leverage the mel-spectrogram extracted from the waveform generated by a DSP module, rather than the predicted mel-spectrogram from the Text-to-Speech (TTS) acoustic model, as the time-frequency domain supervision to the GAN-based vocoder. We also utilize sine excitation as the time-domain supervision to improve the harmonic modeling and eliminate various artifacts of the GAN-based vocoder. Experimental results show that DSPGAN significantly outperforms the compared approaches and can generate high-fidelity speech based on diverse data in TTS.
Abstract:This paper introduces the methods and the results of AIM 2022 challenge on Instagram Filter Removal. Social media filters transform the images by consecutive non-linear operations, and the feature maps of the original content may be interpolated into a different domain. This reduces the overall performance of the recent deep learning strategies. The main goal of this challenge is to produce realistic and visually plausible images where the impact of the filters applied is mitigated while preserving the content. The proposed solutions are ranked in terms of the PSNR value with respect to the original images. There are two prior studies on this task as the baseline, and a total of 9 teams have competed in the final phase of the challenge. The comparison of qualitative results of the proposed solutions and the benchmark for the challenge are presented in this report.
Abstract:Joint super-resolution and inverse tone-mapping (SR-ITM) aims to enhance the visual quality of videos that have quality deficiencies in resolution and dynamic range. This problem arises when using 4K high dynamic range (HDR) TVs to watch a low-resolution standard dynamic range (LR SDR) video. Previous methods that rely on learning local information typically cannot do well in preserving color conformity and long-range structural similarity, resulting in unnatural color transition and texture artifacts. In order to tackle these challenges, we propose a global priors guided modulation network (GPGMNet) for joint SR-ITM. In particular, we design a global priors extraction module (GPEM) to extract color conformity prior and structural similarity prior that are beneficial for ITM and SR tasks, respectively. To further exploit the global priors and preserve spatial information, we devise multiple global priors guided spatial-wise modulation blocks (GSMBs) with a few parameters for intermediate feature modulation, in which the modulation parameters are generated by the shared global priors and the spatial features map from the spatial pyramid convolution block (SPCB). With these elaborate designs, the GPGMNet can achieve higher visual quality with lower computational complexity. Extensive experiments demonstrate that our proposed GPGMNet is superior to the state-of-the-art methods. Specifically, our proposed model exceeds the state-of-the-art by 0.64 dB in PSNR, with 69$\%$ fewer parameters and 3.1$\times$ speedup. The code will be released soon.
Abstract:This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscript focuses on the competition set-up, datasets, the proposed methods and their results. The challenge aims at estimating an HDR image from multiple respective low dynamic range (LDR) observations, which might suffer from under- or over-exposed regions and different sources of noise. The challenge is composed of two tracks with an emphasis on fidelity and complexity constraints: In Track 1, participants are asked to optimize objective fidelity scores while imposing a low-complexity constraint (i.e. solutions can not exceed a given number of operations). In Track 2, participants are asked to minimize the complexity of their solutions while imposing a constraint on fidelity scores (i.e. solutions are required to obtain a higher fidelity score than the prescribed baseline). Both tracks use the same data and metrics: Fidelity is measured by means of PSNR with respect to a ground-truth HDR image (computed both directly and with a canonical tonemapping operation), while complexity metrics include the number of Multiply-Accumulate (MAC) operations and runtime (in seconds).
Abstract:In most video platforms, such as Youtube, and TikTok, the played videos usually have undergone multiple video encodings such as hardware encoding by recording devices, software encoding by video editing apps, and single/multiple video transcoding by video application servers. Previous works in compressed video restoration typically assume the compression artifacts are caused by one-time encoding. Thus, the derived solution usually does not work very well in practice. In this paper, we propose a new method, temporal spatial auxiliary network (TSAN), for transcoded video restoration. Our method considers the unique traits between video encoding and transcoding, and we consider the initial shallow encoded videos as the intermediate labels to assist the network to conduct self-supervised attention training. In addition, we employ adjacent multi-frame information and propose the temporal deformable alignment and pyramidal spatial fusion for transcoded video restoration. The experimental results demonstrate that the performance of the proposed method is superior to that of the previous techniques. The code is available at https://github.com/icecherylXuli/TSAN.