Abstract:Generative models have become a powerful tool for image editing tasks, including object insertion. However, these methods often lack spatial awareness, generating objects with unrealistic locations and scales, or unintentionally altering the scene background. A key challenge lies in maintaining visual coherence, which requires both a geometrically suitable object location and a high-quality image edit. In this paper, we focus on the former, creating a location model dedicated to identifying realistic object locations. Specifically, we train an autoregressive model that generates bounding box coordinates, conditioned on the background image and the desired object class. This formulation allows to effectively handle sparse placement annotations and to incorporate implausible locations into a preference dataset by performing direct preference optimization. Our extensive experiments demonstrate that our generative location model, when paired with an inpainting method, substantially outperforms state-of-the-art instruction-tuned models and location modeling baselines in object insertion tasks, delivering accurate and visually coherent results.
Abstract:Diffusion-based video editing have reached impressive quality and can transform either the global style, local structure, and attributes of given video inputs, following textual edit prompts. However, such solutions typically incur heavy memory and computational costs to generate temporally-coherent frames, either in the form of diffusion inversion and/or cross-frame attention. In this paper, we conduct an analysis of such inefficiencies, and suggest simple yet effective modifications that allow significant speed-ups whilst maintaining quality. Moreover, we introduce Object-Centric Diffusion, coined as OCD, to further reduce latency by allocating computations more towards foreground edited regions that are arguably more important for perceptual quality. We achieve this by two novel proposals: i) Object-Centric Sampling, decoupling the diffusion steps spent on salient regions or background, allocating most of the model capacity to the former, and ii) Object-Centric 3D Token Merging, which reduces cost of cross-frame attention by fusing redundant tokens in unimportant background regions. Both techniques are readily applicable to a given video editing model \textit{without} retraining, and can drastically reduce its memory and computational cost. We evaluate our proposals on inversion-based and control-signal-based editing pipelines, and show a latency reduction up to 10x for a comparable synthesis quality.
Abstract:This paper accelerates video perception, such as semantic segmentation and human pose estimation, by levering cross-frame redundancies. Unlike the existing approaches, which avoid redundant computations by warping the past features using optical-flow or by performing sparse convolutions on frame differences, we approach the problem from a new perspective: low-bit quantization. We observe that residuals, as the difference in network activations between two neighboring frames, exhibit properties that make them highly quantizable. Based on this observation, we propose a novel quantization scheme for video networks coined as Residual Quantization. ResQ extends the standard, frame-by-frame, quantization scheme by incorporating temporal dependencies that lead to better performance in terms of accuracy vs. bit-width. Furthermore, we extend our model to dynamically adjust the bit-width proportional to the amount of changes in the video. We demonstrate the superiority of our model, against the standard quantization and existing efficient video perception models, using various architectures on semantic segmentation and human pose estimation benchmarks.
Abstract:This paper aims to accelerate video stream processing, such as object detection and semantic segmentation, by leveraging the temporal redundancies that exist between video frames. Instead of propagating and warping features using motion alignment, such as optical flow, we propose a novel knowledge distillation schema coined as Delta Distillation. In our proposal, the student learns the variations in the teacher's intermediate features over time. We demonstrate that these temporal variations can be effectively distilled due to the temporal redundancies within video frames. During inference, both teacher and student cooperate for providing predictions: the former by providing initial representations extracted only on the key-frame, and the latter by iteratively estimating and applying deltas for the successive frames. Moreover, we consider various design choices to learn optimal student architectures including an end-to-end learnable architecture search. By extensive experiments on a wide range of architectures, including the most efficient ones, we demonstrate that delta distillation sets a new state of the art in terms of accuracy vs. efficiency trade-off for semantic segmentation and object detection in videos. Finally, we show that, as a by-product, delta distillation improves the temporal consistency of the teacher model.
Abstract:Humans do not perceive all parts of a scene with the same resolution, but rather focus on few regions of interest (ROIs). Traditional Object-Based codecs take advantage of this biological intuition, and are capable of non-uniform allocation of bits in favor of salient regions, at the expense of increased distortion the remaining areas: such a strategy allows a boost in perceptual quality under low rate constraints. Recently, several neural codecs have been introduced for video compression, yet they operate uniformly over all spatial locations, lacking the capability of ROI-based processing. In this paper, we introduce two models for ROI-based neural video coding. First, we propose an implicit model that is fed with a binary ROI mask and it is trained by de-emphasizing the distortion of the background. Secondly, we design an explicit latent scaling method, that allows control over the quantization binwidth for different spatial regions of latent variables, conditioned on the ROI mask. By extensive experiments, we show that our methods outperform all our baselines in terms of Rate-Distortion (R-D) performance in the ROI. Moreover, they can generalize to different datasets and to any arbitrary ROI at inference time. Finally, they do not require expensive pixel-level annotations during training, as synthetic ROI masks can be used with little to no degradation in performance. To the best of our knowledge, our proposals are the first solutions that integrate ROI-based capabilities into neural video compression models.
Abstract:We propose Skip-Convolutions to leverage the large amount of redundancies in video streams and save computations. Each video is represented as a series of changes across frames and network activations, denoted as residuals. We reformulate standard convolution to be efficiently computed on residual frames: each layer is coupled with a binary gate deciding whether a residual is important to the model prediction,~\eg foreground regions, or it can be safely skipped, e.g. background regions. These gates can either be implemented as an efficient network trained jointly with convolution kernels, or can simply skip the residuals based on their magnitude. Gating functions can also incorporate block-wise sparsity structures, as required for efficient implementation on hardware platforms. By replacing all convolutions with Skip-Convolutions in two state-of-the-art architectures, namely EfficientDet and HRNet, we reduce their computational cost consistently by a factor of 3~4x for two different tasks, without any accuracy drop. Extensive comparisons with existing model compression, as well as image and video efficiency methods demonstrate that Skip-Convolutions set a new state-of-the-art by effectively exploiting the temporal redundancies in videos.
Abstract:Neural networks struggle to learn continuously, as they forget the old knowledge catastrophically whenever the data distribution changes over time. Recently, Continual Learning has inspired a plethora of approaches and evaluation settings; however, the majority of them overlooks the properties of a practical scenario, where the data stream cannot be shaped as a sequence of tasks and offline training is not viable. We work towards General Continual Learning (GCL), where task boundaries blur and the domain and class distributions shift either gradually or suddenly. We address it through Dark Experience Replay, namely matching the network's logits sampled throughout the optimization trajectory, thus promoting consistency with its past. By conducting an extensive analysis on top of standard benchmarks, we show that such a seemingly simple baseline outperforms consolidated approaches and leverages limited resources. To provide a better understanding, we further introduce MNIST-360, a novel GCL evaluation setting.
Abstract:Convolutional Neural Networks experience catastrophic forgetting when optimized on a sequence of learning problems: as they meet the objective of the current training examples, their performance on previous tasks drops drastically. In this work, we introduce a novel framework to tackle this problem with conditional computation. We equip each convolutional layer with task-specific gating modules, selecting which filters to apply on the given input. This way, we achieve two appealing properties. Firstly, the execution patterns of the gates allow to identify and protect important filters, ensuring no loss in the performance of the model for previously learned tasks. Secondly, by using a sparsity objective, we can promote the selection of a limited set of kernels, allowing to retain sufficient model capacity to digest new tasks.Existing solutions require, at test time, awareness of the task to which each example belongs to. This knowledge, however, may not be available in many practical scenarios. Therefore, we additionally introduce a task classifier that predicts the task label of each example, to deal with settings in which a task oracle is not available. We validate our proposal on four continual learning datasets. Results show that our model consistently outperforms existing methods both in the presence and the absence of a task oracle. Notably, on Split SVHN and Imagenet-50 datasets, our model yields up to 23.98% and 17.42% improvement in accuracy w.r.t. competing methods.
Abstract:We present a novel and hierarchical approach for supervised classification of signals spanning over a fixed graph, reflecting shared properties of the dataset. To this end, we introduce a Convolutional Cluster Pooling layer exploiting a multi-scale clustering in order to highlight, at different resolutions, locally connected regions on the input graph. Our proposal generalises well-established neural models such as Convolutional Neural Networks (CNNs) on irregular and complex domains, by means of the exploitation of the weight sharing property in a graph-oriented architecture. In this work, such property is based on the centrality of each vertex within its soft-assigned cluster. Extensive experiments on NTU RGB+D, CIFAR-10 and 20NEWS demonstrate the effectiveness of the proposed technique in capturing both local and global patterns in graph-structured data out of different domains.
Abstract:We propose an unsupervised model for novelty detection. The subject is treated as a density estimation problem, in which a deep neural network is employed to learn a parametric function that maximizes probabilities of training samples. This is achieved by equipping an autoencoder with a novel module, responsible for the maximization of compressed codes' likelihood by means of autoregression. We illustrate design choices and proper layers to perform autoregressive density estimation when dealing with both image and video inputs. Despite a very general formulation, our model shows promising results in diverse one-class novelty detection and video anomaly detection benchmarks.