Shammie
Abstract:This paper concerns the evaluation of reward models used in language modeling. A reward model is a function that takes a prompt and a response and assigns a score indicating how good that response is for the prompt. A key challenge is that reward models are usually imperfect proxies for actual preferences. For example, we may worry that a model trained to reward helpfulness learns to instead prefer longer responses. In this paper, we develop an evaluation method, RATE (Rewrite-based Attribute Treatment Estimators), that allows us to measure the causal effect of a given attribute of a response (e.g., length) on the reward assigned to that response. The core idea is to use large language models to rewrite responses to produce imperfect counterfactuals, and to adjust for rewriting error by rewriting twice. We show that the RATE estimator is consistent under reasonable assumptions. We demonstrate the effectiveness of RATE on synthetic and real-world data, showing that it can accurately estimate the effect of a given attribute on the reward model.
Abstract:Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
Abstract:Recent advances in deep neural language models combined with the capacity of large scale datasets have accelerated the development of natural language generation systems that produce fluent and coherent texts (to various degrees of success) in a multitude of tasks and application contexts. However, controlling the output of these models for desired user and task needs is still an open challenge. This is crucial not only to customizing the content and style of the generated language, but also to their safe and reliable deployment in the real world. We present an extensive survey on the emerging topic of constrained neural language generation in which we formally define and categorize the problems of natural language generation by distinguishing between conditions and constraints (the latter being testable conditions on the output text instead of the input), present constrained text generation tasks, and review existing methods and evaluation metrics for constrained text generation. Our aim is to highlight recent progress and trends in this emerging field, informing on the most promising directions and limitations towards advancing the state-of-the-art of constrained neural language generation research.
Abstract:Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 442 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI's GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit "breakthrough" behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.
Abstract:We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. However, due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of corpora and evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the initial release for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.
Abstract:Text simplification is concerned with reducing the language complexity and improving the readability of professional content so that the text is accessible to readers at different ages and educational levels. As a promising practice to improve the fairness and transparency of text information systems, the notion of text simplification has been mixed in existing literature, ranging all the way through assessing the complexity of single words to automatically generating simplified documents. We show that the general problem of text simplification can be formally decomposed into a compact pipeline of tasks to ensure the transparency and explanability of the process. In this paper, we present a systematic analysis of the first two steps in this pipeline: 1) predicting the complexity of a given piece of text, and 2) identifying complex components from the text considered to be complex. We show that these two tasks can be solved separately, using either lexical approaches or the state-of-the-art deep learning methods, or they can be solved jointly through an end-to-end, explainable machine learning predictor. We propose formal evaluation metrics for both tasks, through which we are able to compare the performance of the candidate approaches using multiple datasets from a diversity of domains.
Abstract:Recent advances in neural network-based generative modeling have reignited the hopes in having computer systems capable of seamlessly conversing with humans and able to understand natural language. Neural architectures have been employed to generate text excerpts to various degrees of success, in a multitude of contexts and tasks that fulfil various user needs. Notably, high capacity deep learning models trained on large scale datasets demonstrate unparalleled abilities to learn patterns in the data even in the lack of explicit supervision signals, opening up a plethora of new possibilities regarding producing realistic and coherent texts. While the field of natural language generation is evolving rapidly, there are still many open challenges to address. In this survey we formally define and categorize the problem of natural language generation. We review particular application tasks that are instantiations of these general formulations, in which generating natural language is of practical importance. Next we include a comprehensive outline of methods and neural architectures employed for generating diverse texts. Nevertheless, there is no standard way to assess the quality of text produced by these generative models, which constitutes a serious bottleneck towards the progress of the field. To this end, we also review current approaches to evaluating natural language generation systems. We hope this survey will provide an informative overview of formulations, methods, and assessments of neural natural language generation.
Abstract:Recent advances in deep learning have resulted in a resurgence in the popularity of natural language generation (NLG). Many deep learning based models, including recurrent neural networks and generative adversarial networks, have been proposed and applied to generating various types of text. Despite the fast development of methods, how to better evaluate the quality of these natural language generators remains a significant challenge. We conduct an in-depth empirical study to evaluate the existing evaluation methods for natural language generation. We compare human-based evaluators with a variety of automated evaluation procedures, including discriminative evaluators that measure how well the generated text can be distinguished from human-written text, as well as text overlap metrics that measure how similar the generated text is to human-written references. We measure to what extent these different evaluators agree on the ranking of a dozen of state-of-the-art generators for online product reviews. We find that human evaluators do not correlate well with discriminative evaluators, leaving a bigger question of whether adversarial accuracy is the correct objective for natural language generation. In general, distinguishing machine-generated text is a challenging task even for human evaluators, and their decisions tend to correlate better with text overlap metrics. We also find that diversity is an intriguing metric that is indicative of the assessments of different evaluators.