This paper concerns the evaluation of reward models used in language modeling. A reward model is a function that takes a prompt and a response and assigns a score indicating how good that response is for the prompt. A key challenge is that reward models are usually imperfect proxies for actual preferences. For example, we may worry that a model trained to reward helpfulness learns to instead prefer longer responses. In this paper, we develop an evaluation method, RATE (Rewrite-based Attribute Treatment Estimators), that allows us to measure the causal effect of a given attribute of a response (e.g., length) on the reward assigned to that response. The core idea is to use large language models to rewrite responses to produce imperfect counterfactuals, and to adjust for rewriting error by rewriting twice. We show that the RATE estimator is consistent under reasonable assumptions. We demonstrate the effectiveness of RATE on synthetic and real-world data, showing that it can accurately estimate the effect of a given attribute on the reward model.