Topic:3d Face Reconstruction
What is 3d Face Reconstruction? 3D face reconstruction is the process of creating a 3D model of a person's face from 2D images or videos.
Papers and Code
Mar 29, 2025
Abstract:Despite its significant achievements in large-scale scene reconstruction, 3D Gaussian Splatting still faces substantial challenges, including slow processing, high computational costs, and limited geometric accuracy. These core issues arise from its inherently unstructured design and the absence of efficient parallelization. To overcome these challenges simultaneously, we introduce CityGS-X, a scalable architecture built on a novel parallelized hybrid hierarchical 3D representation (PH^2-3D). As an early attempt, CityGS-X abandons the cumbersome merge-and-partition process and instead adopts a newly-designed batch-level multi-task rendering process. This architecture enables efficient multi-GPU rendering through dynamic Level-of-Detail voxel allocations, significantly improving scalability and performance. Through extensive experiments, CityGS-X consistently outperforms existing methods in terms of faster training times, larger rendering capacities, and more accurate geometric details in large-scale scenes. Notably, CityGS-X can train and render a scene with 5,000+ images in just 5 hours using only 4 * 4090 GPUs, a task that would make other alternative methods encounter Out-Of-Memory (OOM) issues and fail completely. This implies that CityGS-X is far beyond the capacity of other existing methods.
Via

Mar 16, 2025
Abstract:Recently, deep learning-based 3D face reconstruction methods have demonstrated promising advancements in terms of quality and efficiency. Nevertheless, these techniques face challenges in effectively handling occluded scenes and fail to capture intricate geometric facial details. Inspired by the principles of GANs and bump mapping, we have successfully addressed these issues. Our approach aims to deliver comprehensive 3D facial reconstructions, even in the presence of occlusions.While maintaining the overall shape's robustness, we introduce a mid-level shape refinement to the fundamental structure. Furthermore, we illustrate how our method adeptly extends to generate plausible details for obscured facial regions. We offer numerous examples that showcase the effectiveness of our framework in producing realistic results, where traditional methods often struggle. To substantiate the superior adaptability of our approach, we have conducted extensive experiments in the context of general 3D face reconstruction tasks, serving as concrete evidence of its regulatory prowess compared to manual occlusion removal methods.
Via

Mar 16, 2025
Abstract:Recently, deep learning-based 3D face reconstruction methods have demonstrated promising advancements in terms of quality and efficiency. Nevertheless, these techniques face challenges in effectively handling occluded scenes and fail to capture intricate geometric facial details. Inspired by the principles of GANs and bump mapping, we have successfully addressed these issues. Our approach aims to deliver comprehensive 3D facial reconstructions, even in the presence of occlusions.While maintaining the overall shape's robustness, we introduce a mid-level shape refinement to the fundamental structure. Furthermore, we illustrate how our method adeptly extends to generate plausible details for obscured facial regions. We offer numerous examples that showcase the effectiveness of our framework in producing realistic results, where traditional methods often struggle. To substantiate the superior adaptability of our approach, we have conducted extensive experiments in the context of general 3D face reconstruction tasks, serving as concrete evidence of its regulatory prowess compared to manual occlusion removal methods.
Via

Mar 25, 2025
Abstract:Real-time 3D face manipulation has significant applications in virtual reality, social media and human-computer interaction. This paper introduces a novel system, which we call Mirror of Diversity (MOD), that combines Generative Adversarial Networks (GANs) for texture manipulation and 3D Morphable Models (3DMMs) for facial geometry to achieve realistic face transformations that reflect various demographic characteristics, emphasizing the beauty of diversity and the universality of human features. As participants sit in front of a computer monitor with a camera positioned above, their facial characteristics are captured in real time and can further alter their digital face reconstruction with transformations reflecting different demographic characteristics, such as gender and ethnicity (e.g., a person from Africa, Asia, Europe). Another feature of our system, which we call Collective Face, generates an averaged face representation from multiple participants' facial data. A comprehensive evaluation protocol is implemented to assess the realism and demographic accuracy of the transformations. Qualitative feedback is gathered through participant questionnaires, which include comparisons of MOD transformations with similar filters on platforms like Snapchat and TikTok. Additionally, quantitative analysis is conducted using a pretrained Convolutional Neural Network that predicts gender and ethnicity, to validate the accuracy of demographic transformations.
Via

Mar 15, 2025
Abstract:The accurate reconstruction of dynamic street scenes is critical for applications in autonomous driving, augmented reality, and virtual reality. Traditional methods relying on dense point clouds and triangular meshes struggle with moving objects, occlusions, and real-time processing constraints, limiting their effectiveness in complex urban environments. While multi-view stereo and neural radiance fields have advanced 3D reconstruction, they face challenges in computational efficiency and handling scene dynamics. This paper proposes a novel 3D Gaussian point distribution method for dynamic street scene reconstruction. Our approach introduces an adaptive transparency mechanism that eliminates moving objects while preserving high-fidelity static scene details. Additionally, iterative refinement of Gaussian point distribution enhances geometric accuracy and texture representation. We integrate directional encoding with spatial position optimization to optimize storage and rendering efficiency, reducing redundancy while maintaining scene integrity. Experimental results demonstrate that our method achieves high reconstruction quality, improved rendering performance, and adaptability in large-scale dynamic environments. These contributions establish a robust framework for real-time, high-precision 3D reconstruction, advancing the practicality of dynamic scene modeling across multiple applications. The source code for this work is available to the public at https://github.com/deepcoxcom/3dgs
Via

Mar 14, 2025
Abstract:For 3D face modeling, the recently developed 3D-aware neural rendering methods are able to render photorealistic face images with arbitrary viewing directions. The training of the parametric controllable 3D-aware face models, however, still relies on a large-scale dataset that is lab-collected. To address this issue, this paper introduces "StyleMorpheus", the first style-based neural 3D Morphable Face Model (3DMM) that is trained on in-the-wild images. It inherits 3DMM's disentangled controllability (over face identity, expression, and appearance) but without the need for accurately reconstructed explicit 3D shapes. StyleMorpheus employs an auto-encoder structure. The encoder aims at learning a representative disentangled parametric code space and the decoder improves the disentanglement using shape and appearance-related style codes in the different sub-modules of the network. Furthermore, we fine-tune the decoder through style-based generative adversarial learning to achieve photorealistic 3D rendering quality. The proposed style-based design enables StyleMorpheus to achieve state-of-the-art 3D-aware face reconstruction results, while also allowing disentangled control of the reconstructed face. Our model achieves real-time rendering speed, allowing its use in virtual reality applications. We also demonstrate the capability of the proposed style-based design in face editing applications such as style mixing and color editing. Project homepage: https://github.com/ubc-3d-vision-lab/StyleMorpheus.
* 13 pages, work was completed in 2023
Via

Mar 18, 2025
Abstract:3D Gaussian Splatting (3DGS) has become one of the most influential works in the past year. Due to its efficient and high-quality novel view synthesis capabilities, it has been widely adopted in many research fields and applications. Nevertheless, 3DGS still faces challenges to properly manage the number of Gaussian primitives that are used during scene reconstruction. Following the adaptive density control (ADC) mechanism of 3D Gaussian Splatting, new Gaussians in under-reconstructed regions are created, while Gaussians that do not contribute to the rendering quality are pruned. We observe that those criteria for densifying and pruning Gaussians can sometimes lead to worse rendering by introducing artifacts. We especially observe under-reconstructed background or overfitted foreground regions. To encounter both problems, we propose three new improvements to the adaptive density control mechanism. Those include a correction for the scene extent calculation that does not only rely on camera positions, an exponentially ascending gradient threshold to improve training convergence, and significance-aware pruning strategy to avoid background artifacts. With these adaptions, we show that the rendering quality improves while using the same number of Gaussians primitives. Furthermore, with our improvements, the training converges considerably faster, allowing for more than twice as fast training times while yielding better quality than 3DGS. Finally, our contributions are easily compatible with most existing derivative works of 3DGS making them relevant for future works.
* Proc. VISAPP 2025
Via

Mar 14, 2025
Abstract:We present a novel framework for enhancing the visual fidelity and consistency of text-guided 3D Gaussian Splatting (3DGS) editing. Existing editing approaches face two critical challenges: inconsistent geometric reconstructions across multiple viewpoints, particularly in challenging camera positions, and ineffective utilization of depth information during image manipulation, resulting in over-texture artifacts and degraded object boundaries. To address these limitations, we introduce: 1) A complementary information mutual learning network that enhances depth map estimation from 3DGS, enabling precise depth-conditioned 3D editing while preserving geometric structures. 2) A wavelet consensus attention mechanism that effectively aligns latent codes during the diffusion denoising process, ensuring multi-view consistency in the edited results. Through extensive experimentation, our method demonstrates superior performance in rendering quality and view consistency compared to state-of-the-art approaches. The results validate our framework as an effective solution for text-guided editing of 3D scenes.
* 7 pages, 9 figures
Via

Mar 19, 2025
Abstract:This paper presents a novel framework for compactly representing a 3D indoor scene using a set of polycuboids through a deep learning-based fitting method. Indoor scenes mainly consist of man-made objects, such as furniture, which often exhibit rectilinear geometry. This property allows indoor scenes to be represented using combinations of polycuboids, providing a compact representation that benefits downstream applications like furniture rearrangement. Our framework takes a noisy point cloud as input and first detects six types of cuboid faces using a transformer network. Then, a graph neural network is used to validate the spatial relationships of the detected faces to form potential polycuboids. Finally, each polycuboid instance is reconstructed by forming a set of boxes based on the aggregated face labels. To train our networks, we introduce a synthetic dataset encompassing a diverse range of cuboid and polycuboid shapes that reflect the characteristics of indoor scenes. Our framework generalizes well to real-world indoor scene datasets, including Replica, ScanNet, and scenes captured with an iPhone. The versatility of our method is demonstrated through practical applications, such as virtual room tours and scene editing.
* Accepted to 3DV 2025
Via

Feb 25, 2025
Abstract:3D face reconstruction from a single sketch is a critical yet underexplored task with significant practical applications. The primary challenges stem from the substantial modality gap between 2D sketches and 3D facial structures, including: (1) accurately extracting facial keypoints from 2D sketches; (2) preserving diverse facial expressions and fine-grained texture details; and (3) training a high-performing model with limited data. In this paper, we propose Sketch-1-to-3, a novel framework for realistic 3D face reconstruction from a single sketch, to address these challenges. Specifically, we first introduce the Geometric Contour and Texture Detail (GCTD) module, which enhances the extraction of geometric contours and texture details from facial sketches. Additionally, we design a deep learning architecture with a domain adaptation module and a tailored loss function to align sketches with the 3D facial space, enabling high-fidelity expression and texture reconstruction. To facilitate evaluation and further research, we construct SketchFaces, a real hand-drawn facial sketch dataset, and Syn-SketchFaces, a synthetic facial sketch dataset. Extensive experiments demonstrate that Sketch-1-to-3 achieves state-of-the-art performance in sketch-based 3D face reconstruction.
Via
