Abstract:The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
Abstract:Artificial intelligence (AI) has significantly improved medical screening accuracy, particularly in cancer detection and risk assessment. However, traditional classification metrics often fail to account for imbalanced data, varying performance across cohorts, and patient-level inconsistencies, leading to biased evaluations. We propose the Cohort-Attention Evaluation Metrics (CAT) framework to address these challenges. CAT introduces patient-level assessment, entropy-based distribution weighting, and cohort-weighted sensitivity and specificity. Key metrics like CATSensitivity (CATSen), CATSpecificity (CATSpe), and CATMean ensure balanced and fair evaluation across diverse populations. This approach enhances predictive reliability, fairness, and interpretability, providing a robust evaluation method for AI-driven medical screening models.
Abstract:The accurate reconstruction of dynamic street scenes is critical for applications in autonomous driving, augmented reality, and virtual reality. Traditional methods relying on dense point clouds and triangular meshes struggle with moving objects, occlusions, and real-time processing constraints, limiting their effectiveness in complex urban environments. While multi-view stereo and neural radiance fields have advanced 3D reconstruction, they face challenges in computational efficiency and handling scene dynamics. This paper proposes a novel 3D Gaussian point distribution method for dynamic street scene reconstruction. Our approach introduces an adaptive transparency mechanism that eliminates moving objects while preserving high-fidelity static scene details. Additionally, iterative refinement of Gaussian point distribution enhances geometric accuracy and texture representation. We integrate directional encoding with spatial position optimization to optimize storage and rendering efficiency, reducing redundancy while maintaining scene integrity. Experimental results demonstrate that our method achieves high reconstruction quality, improved rendering performance, and adaptability in large-scale dynamic environments. These contributions establish a robust framework for real-time, high-precision 3D reconstruction, advancing the practicality of dynamic scene modeling across multiple applications. The source code for this work is available to the public at https://github.com/deepcoxcom/3dgs
Abstract:The intelligent question answering (IQA) system can accurately capture users' search intention by understanding the natural language questions, searching relevant content efficiently from a massive knowledge-base, and returning the answer directly to the user. Since the IQA system can save inestimable time and workforce in data search and reasoning, it has received more and more attention in data science and artificial intelligence. This article introduced a domain knowledge graph using the graph database and graph computing technologies from massive heterogeneous data in electric power. It then proposed an IQA system based on the electrical power knowledge graph to extract the intent and constraints of natural interrogation based on the natural language processing (NLP) method, to construct graph data query statements via knowledge reasoning, and to complete the accurate knowledge search and analysis to provide users with an intuitive visualization. This method thoroughly combined knowledge graph and graph computing characteristics, realized high-speed multi-hop knowledge correlation reasoning analysis in tremendous knowledge. The proposed work can also provide a basis for the context-aware intelligent question and answer.