Abstract:Reliable stress recognition from facial videos is challenging due to stress's subjective nature and voluntary facial control. While most methods rely on Facial Action Units, the role of disentangled 3D facial geometry remains underexplored. We address this by analyzing stress during distracted driving using EMOCA-derived 3D expression and pose coefficients. Paired hypothesis tests between baseline and stressor phases reveal that 41 of 56 coefficients show consistent, phase-specific stress responses comparable to physiological markers. Building on this, we propose a Transformer-based temporal modeling framework and assess unimodal, early-fusion, and cross-modal attention strategies. Cross-Modal Attention fusion of EMOCA and physiological signals achieves best performance (AUROC 92\%, Accuracy 86.7\%), with EMOCA-gaze fusion also competitive (AUROC 91.8\%). This highlights the effectiveness of temporal modeling and cross-modal attention for stress recognition.
Abstract:Real-time 3D face manipulation has significant applications in virtual reality, social media and human-computer interaction. This paper introduces a novel system, which we call Mirror of Diversity (MOD), that combines Generative Adversarial Networks (GANs) for texture manipulation and 3D Morphable Models (3DMMs) for facial geometry to achieve realistic face transformations that reflect various demographic characteristics, emphasizing the beauty of diversity and the universality of human features. As participants sit in front of a computer monitor with a camera positioned above, their facial characteristics are captured in real time and can further alter their digital face reconstruction with transformations reflecting different demographic characteristics, such as gender and ethnicity (e.g., a person from Africa, Asia, Europe). Another feature of our system, which we call Collective Face, generates an averaged face representation from multiple participants' facial data. A comprehensive evaluation protocol is implemented to assess the realism and demographic accuracy of the transformations. Qualitative feedback is gathered through participant questionnaires, which include comparisons of MOD transformations with similar filters on platforms like Snapchat and TikTok. Additionally, quantitative analysis is conducted using a pretrained Convolutional Neural Network that predicts gender and ethnicity, to validate the accuracy of demographic transformations.