Imitation learning is a framework for learning a behavior policy from demonstrations. Usually, demonstrations are presented in the form of state-action trajectories, with each pair indicating the action to take at the state being visited. In order to learn the behavior policy, the demonstrated actions are usually utilized in two ways. The first, known as Behavior Cloning (BC), treats the action as the target label for each state, and then learns a generalized mapping from states to actions in a supervised manner. Another way, known as Inverse Reinforcement Learning (IRL), views the demonstrated actions as a sequence of decisions, and aims at finding a reward/cost function under which the demonstrated decisions are optimal.
Humans rarely plan whole-body interactions with objects at the level of explicit whole-body movements. High-level intentions, such as affordance, define the goal, while coordinated balance, contact, and manipulation can emerge naturally from underlying physical and motor priors. Scaling such priors is key to enabling humanoids to compose and generalize loco-manipulation skills across diverse contexts while maintaining physically coherent whole-body coordination. To this end, we introduce InterPrior, a scalable framework that learns a unified generative controller through large-scale imitation pretraining and post-training by reinforcement learning. InterPrior first distills a full-reference imitation expert into a versatile, goal-conditioned variational policy that reconstructs motion from multimodal observations and high-level intent. While the distilled policy reconstructs training behaviors, it does not generalize reliably due to the vast configuration space of large-scale human-object interactions. To address this, we apply data augmentation with physical perturbations, and then perform reinforcement learning finetuning to improve competence on unseen goals and initializations. Together, these steps consolidate the reconstructed latent skills into a valid manifold, yielding a motion prior that generalizes beyond the training data, e.g., it can incorporate new behaviors such as interactions with unseen objects. We further demonstrate its effectiveness for user-interactive control and its potential for real robot deployment.
Imitation learning has shown success in many tasks by learning from expert demonstrations. However, most existing work relies on large-scale demonstrations from technical professionals and close monitoring of the training process. These are challenging for a layperson when they want to teach the agent new skills. To lower the barrier of teaching AI agents, we propose Interactive Policy Restructuring and Training (InterPReT), which takes user instructions to continually update the policy structure and optimize its parameters to fit user demonstrations. This enables end-users to interactively give instructions and demonstrations, monitor the agent's performance, and review the agent's decision-making strategies. A user study (N=34) on teaching an AI agent to drive in a racing game confirms that our approach yields more robust policies without impairing system usability, compared to a generic imitation learning baseline, when a layperson is responsible for both giving demonstrations and determining when to stop. This shows that our method is more suitable for end-users without much technical background in machine learning to train a dependable policy
Robotic manipulation continues to be a challenge, and imitation learning (IL) enables robots to learn tasks from expert demonstrations. Current IL methods typically rely on fixed camera setups, where cameras are manually positioned in static locations, imposing significant limitations on adaptability and coverage. Inspired by human active perception, where humans dynamically adjust their viewpoint to capture the most relevant and least noisy information, we propose MAE-Select, a novel framework for active viewpoint selection in single-camera robotic systems. MAE-Select fully leverages pre-trained multi-view masked autoencoder representations and dynamically selects the next most informative viewpoint at each time chunk without requiring labeled viewpoints. Extensive experiments demonstrate that MAE-Select improves the capabilities of single-camera systems and, in some cases, even surpasses multi-camera setups. The project will be available at https://mae-select.github.io.
Imitation learning has emerged as an effective approach for bootstrapping sequential decision-making in robotics, achieving strong performance even in high-dimensional dexterous manipulation tasks. Recent behavior cloning methods further leverage expressive generative models, such as diffusion models and flow matching, to represent multimodal action distributions. However, policies pretrained in this manner often exhibit limited generalization and require additional fine-tuning to achieve robust performance at deployment time. Such adaptation must preserve the global exploration benefits of pretraining while enabling rapid correction of local execution errors. We propose Residual Flow Steering(RFS), a data-efficient reinforcement learning framework for adapting pretrained generative policies. RFS steers a pretrained flow-matching policy by jointly optimizing a residual action and a latent noise distribution, enabling complementary forms of exploration: local refinement through residual corrections and global exploration through latent-space modulation. This design allows efficient adaptation while retaining the expressive structure of the pretrained policy. We demonstrate the effectiveness of RFS on dexterous manipulation tasks, showing efficient fine-tuning in both simulation and real-world settings when adapting pretrained base policies. Project website:https://weirdlabuw.github.io/rfs.
Imitation learning (IL) enables robots to acquire human-like motion skills from demonstrations, but it still requires extensive high-quality data and retraining to handle complex or long-horizon tasks. To improve data efficiency and adaptability, this study proposes a hierarchical IL framework that integrates motion primitives with proportion-based motion synthesis. The proposed method employs a two-layer architecture, where the upper layer performs long-term planning, while a set of lower-layer models learn individual motion primitives, which are combined according to specific proportions. Three model variants are introduced to explore different trade-offs between learning flexibility, computational cost, and adaptability: a learning-based proportion model, a sampling-based proportion model, and a playback-based proportion model, which differ in how the proportions are determined and whether the upper layer is trainable. Through real-robot pick-and-place experiments, the proposed models successfully generated complex motions not included in the primitive set. The sampling-based and playback-based proportion models achieved more stable and adaptable motion generation than the standard hierarchical model, demonstrating the effectiveness of proportion-based motion integration for practical robot learning.
Why do pretrained diffusion or flow-matching policies fail when the same task is performed near an obstacle, on a shifted support surface, or amid mild clutter? Such failures rarely reflect missing motor skills; instead, they expose a limitation of imitation learning under train-test shifts, where action generation is tightly coupled to training-specific spatial configurations and task specifications. Retraining or fine-tuning to address these failures is costly and conceptually misaligned, as the required behaviors already exist but cannot be selectively adapted at test time. We propose Vision-Language Steering (VLS), a training-free framework for inference-time adaptation of frozen generative robot policies. VLS treats adaptation as an inference-time control problem, steering the sampling process of a pretrained diffusion or flow-matching policy in response to out-of-distribution observation-language inputs without modifying policy parameters. By leveraging vision-language models to synthesize trajectory-differentiable reward functions, VLS guides denoising toward action trajectories that satisfy test-time spatial and task requirements. Across simulation and real-world evaluations, VLS consistently outperforms prior steering methods, achieving a 31% improvement on CALVIN and a 13% gain on LIBERO-PRO. Real-world deployment on a Franka robot further demonstrates robust inference-time adaptation under test-time spatial and semantic shifts. Project page: https://vision-language-steering.github.io/webpage/
Semi-supervised imitation learning (SSIL) consists in learning a policy from a small dataset of action-labeled trajectories and a much larger dataset of action-free trajectories. Some SSIL methods learn an inverse dynamics model (IDM) to predict the action from the current state and the next state. An IDM can act as a policy when paired with a video model (VM-IDM) or as a label generator to perform behavior cloning on action-free data (IDM labeling). In this work, we first show that VM-IDM and IDM labeling learn the same policy in a limit case, which we call the IDM-based policy. We then argue that the previously observed advantage of IDM-based policies over behavior cloning is due to the superior sample efficiency of IDM learning, which we attribute to two causes: (i) the ground-truth IDM tends to be contained in a lower complexity hypothesis class relative to the expert policy, and (ii) the ground-truth IDM is often less stochastic than the expert policy. We argue these claims based on insights from statistical learning theory and novel experiments, including a study of IDM-based policies using recent architectures for unified video-action prediction (UVA). Motivated by these insights, we finally propose an improved version of the existing LAPO algorithm for latent action policy learning.
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
Trajectory optimization (TO) is an efficient tool to generate a redundant manipulator's joint trajectory following a 6-dimensional Cartesian path. The optimization performance largely depends on the quality of initial trajectories. However, the selection of a high-quality initial trajectory is non-trivial and requires a considerable time budget due to the extremely large space of the solution trajectories and the lack of prior knowledge about task constraints in configuration space. To alleviate the issue, we present a learning-based initial trajectory generation method that generates high-quality initial trajectories in a short time budget by adopting example-guided reinforcement learning. In addition, we suggest a null-space projected imitation reward to consider null-space constraints by efficiently learning kinematically feasible motion captured in expert demonstrations. Our statistical evaluation in simulation shows the improved optimality, efficiency, and applicability of TO when we plug in our method's output, compared with three other baselines. We also show the performance improvement and feasibility via real-world experiments with a seven-degree-of-freedom manipulator.
Recently, active vision has reemerged as an important concept for manipulation, since visual occlusion occurs more frequently when main cameras are mounted on the robot heads. We reflect on the visual occlusion issue and identify its essence as the absence of information useful for task completion. Inspired by this, we come up with the more fundamental problem of Exploratory and Focused Manipulation (EFM). The proposed problem is about actively collecting information to complete challenging manipulation tasks that require exploration or focus. As an initial attempt to address this problem, we establish the EFM-10 benchmark that consists of 4 categories of tasks that align with our definition (10 tasks in total). We further come up with a Bimanual Active Perception (BAP) strategy, which leverages one arm to provide active vision and another arm to provide force sensing while manipulating. Based on this idea, we collect a dataset named BAPData for the tasks in EFM-10. With the dataset, we successfully verify the effectiveness of the BAP strategy in an imitation learning manner. We hope that the EFM-10 benchmark along with the BAP strategy can become a cornerstone that facilitates future research towards this direction. Project website: EFManipulation.github.io.