Robotics Department, University of Michigan
Abstract:Long-horizon contact-rich manipulation has long been a challenging problem, as it requires reasoning over both discrete contact modes and continuous object motion. We introduce Implicit Contact Diffuser (ICD), a diffusion-based model that generates a sequence of neural descriptors that specify a series of contact relationships between the object and the environment. This sequence is then used as guidance for an MPC method to accomplish a given task. The key advantage of this approach is that the latent descriptors provide more task-relevant guidance to MPC, helping to avoid local minima for contact-rich manipulation tasks. Our experiments demonstrate that ICD outperforms baselines on complex, long-horizon, contact-rich manipulation tasks, such as cable routing and notebook folding. Additionally, our experiments also indicate that \methodshort can generalize a target contact relationship to a different environment. More visualizations can be found on our website $\href{https://implicit-contact-diffuser.github.io/}{https://implicit-contact-diffuser.github.io}$
Abstract:Planning contact-rich interactions for multi-finger manipulation is challenging due to the high-dimensionality and hybrid nature of dynamics. Recent advances in data-driven methods have shown promise, but are sensitive to the quality of training data. Combining learning with classical methods like trajectory optimization and search adds additional structure to the problem and domain knowledge in the form of constraints, which can lead to outperforming the data on which models are trained. We present Diffusion-Informed Probabilistic Contact Search (DIPS), which uses an A* search to plan a sequence of contact modes informed by a diffusion model. We train the diffusion model on a dataset of demonstrations consisting of contact modes and trajectories generated by a trajectory optimizer given those modes. In addition, we use a particle filter-inspired method to reason about variability in diffusion sampling arising from model error, estimating likelihoods of trajectories using a learned discriminator. We show that our method outperforms ablations that do not reason about variability and can plan contact sequences that outperform those found in training data across multiple tasks. We evaluate on simulated tabletop card sliding and screwdriver turning tasks, as well as the screwdriver task in hardware to show that our combined learning and planning approach transfers to the real world.
Abstract:Whether learned, simulated, or analytical, approximations of a robot's dynamics can be inaccurate when encountering novel environments. Many approaches have been proposed to quantify the aleatoric uncertainty of such methods, i.e. uncertainty resulting from stochasticity, however these estimates alone are not enough to properly estimate the uncertainty of a model in a novel environment, where the actual dynamics can change. Such changes can induce epistemic uncertainty, i.e. uncertainty due to a lack of information/data. Accounting for both epistemic and aleatoric dynamics uncertainty in a theoretically-grounded way remains an open problem. We introduce Local Uncertainty Conformal Calibration (LUCCa), a conformal prediction-based approach that calibrates the aleatoric uncertainty estimates provided by dynamics models to generate probabilistically-valid prediction regions of the system's state. We account for both epistemic and aleatoric uncertainty non-asymptotically, without strong assumptions about the form of the true dynamics or how it changes. The calibration is performed locally in the state-action space, leading to uncertainty estimates that are useful for planning. We validate our method by constructing probabilistically-safe plans for a double-integrator under significant changes in dynamics.
Abstract:Parameterizing finger rolling and finger-object contacts in a differentiable manner is important for formulating dexterous manipulation as a trajectory optimization problem. In contrast to previous methods which often assume simplified geometries of the robot and object or do not explicitly model finger rolling, we propose a method to further extend the capabilities of dexterous manipulation by accounting for non-trivial geometries of both the robot and the object. By integrating the object's Signed Distance Field (SDF) with a sampling method, our method estimates contact and rolling-related variables and includes those in a trajectory optimization framework. This formulation naturally allows for the emergence of finger-rolling behaviors, enabling the robot to locally adjust the contact points. Our method is tested in a peg alignment task and a screwdriver turning task, where it outperforms the baselines in terms of achieving desired object configurations and avoiding dropping the object. We also successfully apply our method to a real-world screwdriver turning task, demonstrating its robustness to the sim2real gap.
Abstract:This paper presents Rummaging Using Mutual Information (RUMI), a method for online generation of robot action sequences to gather information about the pose of a known movable object in visually-occluded environments. Focusing on contact-rich rummaging, our approach leverages mutual information between the object pose distribution and robot trajectory for action planning. From an observed partial point cloud, RUMI deduces the compatible object pose distribution and approximates the mutual information of it with workspace occupancy in real time. Based on this, we develop an information gain cost function and a reachability cost function to keep the object within the robot's reach. These are integrated into a model predictive control (MPC) framework with a stochastic dynamics model, updating the pose distribution in a closed loop. Key contributions include a new belief framework for object pose estimation, an efficient information gain computation strategy, and a robust MPC-based control scheme. RUMI demonstrates superior performance in both simulated and real tasks compared to baseline methods.
Abstract:In this paper, we consider the problem of non-prehensile manipulation using grasped objects. This problem is a superset of many common manipulation skills including instances of tool-use (e.g., grasped spatula flipping a burger) and assembly (e.g., screwdriver tightening a screw). Here, we present an algorithmic approach for non-prehensile manipulation leveraging a gripper with highly compliant and high-resolution tactile sensors. Our approach solves for robot actions that drive object poses and forces to desired values while obeying the complex dynamics induced by the sensors as well as the constraints imposed by static equilibrium, object kinematics, and frictional contact. Our method is able to produce a variety of manipulation skills and is amenable to gradient-based optimization by exploiting differentiability within contact modes (e.g., specifications of sticking or sliding contacts). We evaluate 4 variants of controllers that attempt to realize these plans and demonstrate a number of complex skills including non-prehensile planar sliding and pivoting on a variety of object geometries. The perception and controls capabilities that drive these skills are the building blocks towards dexterous and reactive autonomy in unstructured environments.
Abstract:We propose a method for improving the prediction accuracy of learned robot dynamics models on out-of-distribution (OOD) states. We achieve this by leveraging two key sources of structure often present in robot dynamics: 1) sparsity, i.e., some components of the state may not affect the dynamics, and 2) physical limits on the set of possible motions, in the form of nonholonomic constraints. Crucially, we do not assume this structure is known a priori, and instead learn it from data. We use contrastive learning to obtain a distance pseudometric that uncovers the sparsity pattern in the dynamics, and use it to reduce the input space when learning the dynamics. We then learn the unknown constraint manifold by approximating the normal space of possible motions from the data, which we use to train a Gaussian process (GP) representation of the constraint manifold. We evaluate our approach on a physical differential-drive robot and a simulated quadrotor, showing improved prediction accuracy on OOD data relative to baselines.
Abstract:Manipulation of articulated and deformable objects can be difficult due to their compliant and under-actuated nature. Unexpected disturbances can cause the object to deviate from a predicted state, making it necessary to use Model-Predictive Control (MPC) methods to plan motion. However, these methods need a short planning horizon to be practical. Thus, MPC is ill-suited for long-horizon manipulation tasks due to local minima. In this paper, we present a diffusion-based method that guides an MPC method to accomplish long-horizon manipulation tasks by dynamically specifying sequences of subgoals for the MPC to follow. Our method, called Subgoal Diffuser, generates subgoals in a coarse-to-fine manner, producing sparse subgoals when the task is easily accomplished by MPC and more dense subgoals when the MPC method needs more guidance. The density of subgoals is determined dynamically based on a learned estimate of reachability, and subgoals are distributed to focus on challenging parts of the task. We evaluate our method on two robot manipulation tasks and find it improves the planning performance of an MPC method, and also outperforms prior diffusion-based methods.
Abstract:Robotic manipulation relies on analytical or learned models to simulate the system dynamics. These models are often inaccurate and based on offline information, so that the robot planner is unable to cope with mismatches between the expected and the actual behavior of the system (e.g., the presence of an unexpected obstacle). In these situations, the robot should use information gathered online to correct its planning strategy and adapt to the actual system response. We propose a sampling-based motion planning approach that uses an estimate of the model error and online observations to correct the planning strategy at each new replanning. Our approach adapts the cost function and the sampling bias of a kinodynamic motion planner when the outcome of the executed transitions is different from the expected one (e.g., when the robot unexpectedly collides with an obstacle) so that future trajectories will avoid unreliable motions. To infer the properties of a new transition, we introduce the notion of context-awareness, i.e., we store local environment information for each executed transition and avoid new transitions with context similar to previous unreliable ones. This is helpful for leveraging online information even if the simulated transitions are far (in the state-and-action space) from the executed ones. Simulation and experimental results show that the proposed approach increases the success rate in execution and reduces the number of replannings needed to reach the goal.
Abstract:Robotic manipulation of deformable, one-dimensional objects (DOOs) like ropes or cables has important potential applications in manufacturing, agriculture, and surgery. In such environments, the task may involve threading through or avoiding becoming tangled with objects like racks or frames. Grasping with multiple grippers can create closed loops between the robot and DOO, and If an obstacle lies within this loop, it may be impossible to reach the goal. However, prior work has only considered the topology of the DOO in isolation, ignoring the arms that are manipulating it. Searching over possible grasps to accomplish the task without considering such topological information is very inefficient, as many grasps will not lead to progress on the task due to topological constraints. Therefore, we propose a grasp loop signature which categorizes the topology of these grasp loops and show how it can be used to guide planning. We perform experiments in simulation on two DOO manipulation tasks to show that using the signature is faster and succeeds more often than methods that rely on local geometry or finite-horizon planning. Finally, we demonstrate using the signature in the real world to manipulate a cable in a scene with obstacles using a dual-arm robot.