Abstract:Scene Graph Generation (SGG) can extract abstract semantic relations between entities in images as graph representations. This task holds strong promises for other downstream tasks such as the embodied cognition of an autonomous agent. However, to power such applications, SGG needs to solve the gap of real-time latency. In this work, we propose to investigate the bottlenecks of current approaches for real-time constraint applications. Then, we propose a simple yet effective implementation of a real-time SGG approach using YOLOV8 as an object detection backbone. Our implementation is the first to obtain more than 48 FPS for the task with no loss of accuracy, successfully outperforming any other lightweight approaches. Our code is freely available at https://github.com/Maelic/SGG-Benchmark.
Abstract:Autonomous vessels have emerged as a prominent and accepted solution, particularly in the naval defence sector. However, achieving full autonomy for marine vessels demands the development of robust and reliable control and guidance systems that can handle various encounters with manned and unmanned vessels while operating effectively under diverse weather and sea conditions. A significant challenge in this pursuit is ensuring the autonomous vessels' compliance with the International Regulations for Preventing Collisions at Sea (COLREGs). These regulations present a formidable hurdle for the human-level understanding by autonomous systems as they were originally designed from common navigation practices created since the mid-19th century. Their ambiguous language assumes experienced sailors' interpretation and execution, and therefore demands a high-level (cognitive) understanding of language and agent intentions. These capabilities surpass the current state-of-the-art in intelligent systems. This position paper highlights the critical requirements for a trustworthy control and guidance system, exploring the complexity of adapting COLREGs for safe vessel-on-vessel encounters considering autonomous maritime technology competing and/or cooperating with manned vessels.
Abstract:Emotion recognition is a topic of significant interest in assistive robotics due to the need to equip robots with the ability to comprehend human behavior, facilitating their effective interaction in our society. Consequently, efficient and dependable emotion recognition systems supporting optimal human-machine communication are required. Multi-modality (including speech, audio, text, images, and videos) is typically exploited in emotion recognition tasks. Much relevant research is based on merging multiple data modalities and training deep learning models utilizing low-level data representations. However, most existing emotion databases are not large (or complex) enough to allow machine learning approaches to learn detailed representations. This paper explores modalityspecific pre-trained transformer frameworks for self-supervised learning of speech and text representations for data-efficient emotion recognition while achieving state-of-the-art performance in recognizing emotions. This model applies feature-level fusion using nonverbal cue data points from motion capture to provide multimodal speech emotion recognition. The model was trained using the publicly available IEMOCAP dataset, achieving an overall accuracy of 77.58% for four emotions, outperforming state-of-the-art approaches
Abstract:Navigation is an essential ability for mobile agents to be completely autonomous and able to perform complex actions. However, the problem of navigation for agents with limited (or no) perception of the world, or devoid of a fully defined motion model, has received little attention from research in AI and Robotics. One way to tackle this problem is to use guided navigation, in which other autonomous agents, endowed with perception, can combine their distinct viewpoints to infer the localisation and the appropriate commands to guide a sensory deprived agent through a particular path. Due to the limited knowledge about the physical and perceptual characteristics of the guided agent, this task should be conducted on a level of abstraction allowing the use of a generic motion model, and high-level commands, that can be applied by any type of autonomous agents, including humans. The main task considered in this work is, given a group of autonomous agents perceiving their common environment with their independent, egocentric and local vision sensors, the development and evaluation of algorithms capable of producing a set of high-level commands (involving qualitative directions: e.g. move left, go straight ahead) capable of guiding a sensory deprived robot to a goal location.
Abstract:Spatial puzzles composed of rigid objects, flexible strings and holes offer interesting domains for reasoning about spatial entities that are common in the human daily-life's activities. The goal of this work is to investigate the automated solution of this kind of puzzles adapting an algorithm that combines Answer Set Programming (ASP) with Markov Decision Process (MDP), algorithm oASP(MDP), to use heuristics accelerating the learning process. ASP is applied to represent the domain as an MDP, while a Reinforcement Learning algorithm (Q-Learning) is used to find the optimal policies. In this work, the heuristics were obtained from the solution of relaxed versions of the puzzles. Experiments were performed on deterministic, non-deterministic and non-stationary versions of the puzzles. Results show that the proposed approach can accelerate the learning process, presenting an advantage when compared to the non-heuristic versions of oASP(MDP) and Q-Learning.
Abstract:Non-stationary domains, that change in unpredicted ways, are a challenge for agents searching for optimal policies in sequential decision-making problems. This paper presents a combination of Markov Decision Processes (MDP) with Answer Set Programming (ASP), named {\em Online ASP for MDP} (oASP(MDP)), which is a method capable of constructing the set of domain states while the agent interacts with a changing environment. oASP(MDP) updates previously obtained policies, learnt by means of Reinforcement Learning (RL), using rules that represent the domain changes observed by the agent. These rules represent a set of domain constraints that are processed as ASP programs reducing the search space. Results show that oASP(MDP) is capable of finding solutions for problems in non-stationary domains without interfering with the action-value function approximation process.
Abstract:Non-stationary domains, where unforeseen changes happen, present a challenge for agents to find an optimal policy for a sequential decision making problem. This work investigates a solution to this problem that combines Markov Decision Processes (MDP) and Reinforcement Learning (RL) with Answer Set Programming (ASP) in a method we call ASP(RL). In this method, Answer Set Programming is used to find the possible trajectories of an MDP, from where Reinforcement Learning is applied to learn the optimal policy of the problem. Results show that ASP(RL) is capable of efficiently finding the optimal solution of an MDP representing non-stationary domains.