Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Digital sovereignty has emerged as a central concern for modern software-intensive systems, driven by the dominance of non-sovereign cloud infrastructures, the rapid adoption of Generative AI, and increasingly stringent regulatory requirements. While existing initiatives address governance, compliance, and security in isolation, they provide limited guidance on how sovereignty can be operationalized at the architectural level. In this paper, we argue that sovereignty must be treated as a first-class architectural property rather than a purely regulatory objective. We introduce a Sovereign Reference Architecture that integrates self-sovereign identity, blockchain-based trust and auditability, sovereign data governance, and Generative AI deployed under explicit architectural control. The architecture explicitly captures the dual role of Generative AI as both a source of governance risk and an enabler of compliance, accountability, and continuous assurance when properly constrained. By framing sovereignty as an architectural quality attribute, our work bridges regulatory intent and concrete system design, offering a coherent foundation for building auditable, evolvable, and jurisdiction-aware AI-enabled systems. The proposed reference architecture provides a principled starting point for future research and practice at the intersection of software architecture, Generative AI, and digital sovereignty.
Recent advancements in image editing have enabled highly controllable and semantically-aware alteration of visual content, posing unprecedented challenges to manipulation localization. However, existing AI-generated forgery localization methods primarily focus on inpainting-based manipulations, making them ineffective against the latest instruction-based editing paradigms. To bridge this critical gap, we propose LocateEdit-Bench, a large-scale dataset comprising $231$K edited images, designed specifically to benchmark localization methods against instruction-driven image editing. Our dataset incorporates four cutting-edge editing models and covers three common edit types. We conduct a detailed analysis of the dataset and develop two multi-metric evaluation protocols to assess existing localization methods. Our work establishes a foundation to keep pace with the evolving landscape of image editing, thereby facilitating the development of effective methods for future forgery localization. Dataset will be open-sourced upon acceptance.
Large language models (LLMs) are increasingly used in academic writing workflows, yet they frequently hallucinate by generating citations to sources that do not exist. This study analyzes 100 AI-generated hallucinated citations that appeared in papers accepted by the 2025 Conference on Neural Information Processing Systems (NeurIPS), one of the world's most prestigious AI conferences. Despite review by 3-5 expert researchers per paper, these fabricated citations evaded detection, appearing in 53 published papers (approx. 1% of all accepted papers). We develop a five-category taxonomy that classifies hallucinations by their failure mode: Total Fabrication (66%), Partial Attribute Corruption (27%), Identifier Hijacking (4%), Placeholder Hallucination (2%), and Semantic Hallucination (1%). Our analysis reveals a critical finding: every hallucination (100%) exhibited compound failure modes. The distribution of secondary characteristics was dominated by Semantic Hallucination (63%) and Identifier Hijacking (29%), which often appeared alongside Total Fabrication to create a veneer of plausibility and false verifiability. These compound structures exploit multiple verification heuristics simultaneously, explaining why peer review fails to detect them. The distribution exhibits a bimodal pattern: 92% of contaminated papers contain 1-2 hallucinations (minimal AI use) while 8% contain 4-13 hallucinations (heavy reliance). These findings demonstrate that current peer review processes do not include effective citation verification and that the problem extends beyond NeurIPS to other major conferences, government reports, and professional consulting. We propose mandatory automated citation verification at submission as an implementable solution to prevent fabricated citations from becoming normalized in scientific literature.
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
Data is the lifeblood of AI, yet much of the most valuable data remains locked in silos due to privacy and regulations. As a result, AI remains heavily underutilized in many of the most important domains, including healthcare, education, and finance. Synthetic data generation (SDG), i.e. the generation of artificial data with a synthesizer trained on real data, offers an appealing solution to make data available while mitigating privacy concerns, however existing SDG-as-a-service workflow require data holders to trust providers with access to private data.We propose FHAIM, the first fully homomorphic encryption (FHE) framework for training a marginal-based synthetic data generator on encrypted tabular data. FHAIM adapts the widely used AIM algorithm to the FHE setting using novel FHE protocols, ensuring that the private data remains encrypted throughout and is released only with differential privacy guarantees. Our empirical analysis show that FHAIM preserves the performance of AIM while maintaining feasible runtimes.
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the \textbf{Vibe AIGC}, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows. Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.
An exponential growth of Machine Learning and its Generative AI applications brings with it significant security challenges, often referred to as Adversarial Machine Learning (AML). In this paper, we conducted two comprehensive studies to explore the perspectives of industry professionals and students on different AML vulnerabilities and their educational strategies. In our first study, we conducted an online survey with professionals revealing a notable correlation between cybersecurity education and concern for AML threats. For our second study, we developed two CTF challenges that implement Natural Language Processing and Generative AI concepts and demonstrate a poisoning attack on the training data set. The effectiveness of these challenges was evaluated by surveying undergraduate and graduate students at Carnegie Mellon University, finding that a CTF-based approach effectively engages interest in AML threats. Based on the responses of the participants in our research, we provide detailed recommendations emphasizing the critical need for integrated security education within the ML curriculum.
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.