What is Generative AI? Generative AI or generative artificial intelligence refers to a type of AI that can create various types of content including text, audio, music, images, videos, and code. This is powered by large models called foundation models that are trained on massive datasets to perform out-of-the-box tasks including classification, summarization, video and audio comprehension, prediction, Q&A, and more.
Papers and Code
Jul 10, 2025
Abstract:Given the rapid adoption of generative AI and its potential to impact a wide range of tasks, understanding the effects of AI on the economy is one of society's most important questions. In this work, we take a step toward that goal by analyzing the work activities people do with AI, how successfully and broadly those activities are done, and combine that with data on what occupations do those activities. We analyze a dataset of 200k anonymized and privacy-scrubbed conversations between users and Microsoft Bing Copilot, a publicly available generative AI system. We find the most common work activities people seek AI assistance for involve gathering information and writing, while the most common activities that AI itself is performing are providing information and assistance, writing, teaching, and advising. Combining these activity classifications with measurements of task success and scope of impact, we compute an AI applicability score for each occupation. We find the highest AI applicability scores for knowledge work occupation groups such as computer and mathematical, and office and administrative support, as well as occupations such as sales whose work activities involve providing and communicating information. Additionally, we characterize the types of work activities performed most successfully, how wage and education correlate with AI applicability, and how real-world usage compares to predictions of occupational AI impact.
* 40 pages
Via

Jul 10, 2025
Abstract:What algorithms do LLMs actually learn and use to solve problems? Studies addressing this question are sparse, as research priorities are focused on improving performance through scale, leaving a theoretical and empirical gap in understanding emergent algorithms. This position paper proposes AlgEval: a framework for systematic research into the algorithms that LLMs learn and use. AlgEval aims to uncover algorithmic primitives, reflected in latent representations, attention, and inference-time compute, and their algorithmic composition to solve task-specific problems. We highlight potential methodological paths and a case study toward this goal, focusing on emergent search algorithms. Our case study illustrates both the formation of top-down hypotheses about candidate algorithms, and bottom-up tests of these hypotheses via circuit-level analysis of attention patterns and hidden states. The rigorous, systematic evaluation of how LLMs actually solve tasks provides an alternative to resource-intensive scaling, reorienting the field toward a principled understanding of underlying computations. Such algorithmic explanations offer a pathway to human-understandable interpretability, enabling comprehension of the model's internal reasoning performance measures. This can in turn lead to more sample-efficient methods for training and improving performance, as well as novel architectures for end-to-end and multi-agent systems.
* Accepted at ICML 2025 as a Spotlight Position Paper
Via

Jul 10, 2025
Abstract:The accelerating growth of photographic collections has outpaced manual cataloguing, motivating the use of vision language models (VLMs) to automate metadata generation. This study examines whether Al-generated catalogue descriptions can approximate human-written quality and how generative Al might integrate into cataloguing workflows in archival and museum collections. A VLM (InternVL2) generated catalogue descriptions for photographic prints on labelled cardboard mounts with archaeological content, evaluated by archive and archaeology experts and non-experts in a human-centered, experimental framework. Participants classified descriptions as AI-generated or expert-written, rated quality, and reported willingness to use and trust in AI tools. Classification performance was above chance level, with both groups underestimating their ability to detect Al-generated descriptions. OCR errors and hallucinations limited perceived quality, yet descriptions rated higher in accuracy and usefulness were harder to classify, suggesting that human review is necessary to ensure the accuracy and quality of catalogue descriptions generated by the out-of-the-box model, particularly in specialized domains like archaeological cataloguing. Experts showed lower willingness to adopt AI tools, emphasizing concerns on preservation responsibility over technical performance. These findings advocate for a collaborative approach where AI supports draft generation but remains subordinate to human verification, ensuring alignment with curatorial values (e.g., provenance, transparency). The successful integration of this approach depends not only on technical advancements, such as domain-specific fine-tuning, but even more on establishing trust among professionals, which could both be fostered through a transparent and explainable AI pipeline.
* 56 pages, 7 figures
Via

Jul 10, 2025
Abstract:Generative AI has demonstrated strong potential in healthcare, from clinical decision support to patient-facing chatbots that improve outcomes. A critical challenge for deployment is effective human-AI communication, where content must be both personalized and understandable. We introduce MedReadCtrl, a readability-controlled instruction tuning framework that enables LLMs to adjust output complexity without compromising meaning. Evaluations of nine datasets and three tasks across medical and general domains show that MedReadCtrl achieves significantly lower readability instruction-following errors than GPT-4 (e.g., 1.39 vs. 1.59 on ReadMe, p<0.001) and delivers substantial gains on unseen clinical tasks (e.g., +14.7 ROUGE-L, +6.18 SARI on MTSamples). Experts consistently preferred MedReadCtrl (71.7% vs. 23.3%), especially at low literacy levels. These gains reflect MedReadCtrl's ability to restructure clinical content into accessible, readability-aligned language while preserving medical intent, offering a scalable solution to support patient education and expand equitable access to AI-enabled care.
* Equal contribution for the first two authors. arXiv admin note: text
overlap with arXiv:2406.09205
Via

Jul 10, 2025
Abstract:Transposed Convolutions (TCONV) enable the up-scaling mechanism within generative Artificial Intelligence (AI) models. However, the predominant Input-Oriented Mapping (IOM) method for implementing TCONV has complex output mapping, overlapping sums, and ineffectual computations. These inefficiencies further exacerbate the performance bottleneck of TCONV and generative models on resource-constrained edge devices. To address this problem, in this paper we propose MM2IM, a hardware-software co-designed accelerator that combines Matrix Multiplication (MatMul) with col2IM to process TCONV layers on resource-constrained edge devices efficiently. Using the SECDA-TFLite design toolkit, we implement MM2IM and evaluate its performance across 261 TCONV problem configurations, achieving an average speedup of 1.9x against a dual-thread ARM Neon optimized CPU baseline. We then evaluate the performance of MM2IM on a range of TCONV layers from well-known generative models achieving up to 4.2x speedup, and compare it against similar resource-constrained TCONV accelerators, outperforming them by at least 2x GOPs/DSP. Finally, we evaluate MM2IM on the DCGAN and pix2pix GAN models, achieving up to 3x speedup and 2.4x energy reduction against the CPU baseline.
* Accepted to 35th International Conference on Field-Programmable Logic
and Applications (FPL) 2025
Via

Jul 09, 2025
Abstract:Spatial audio is an integral part of immersive entertainment, such as VR/AR, and has seen increasing popularity in cinema and music as well. The most common format of spatial audio is described as first-order Ambisonics (FOA). We seek to extend recent advancements in FOA generative AI models to enable the generation of 3D scenes with dynamic sound sources. Our proposed end-to-end model, SonicMotion, comes in two variations which vary in their user input and level of precision in sound source localization. In addition to our model, we also present a new dataset of simulated spatial audio-caption pairs. Evaluation of our models demonstrate that they are capable of matching the semantic alignment and audio quality of state of the art models while capturing the desired spatial attributes.
Via

Jul 10, 2025
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a crucial framework in natural language processing (NLP), improving factual consistency and reducing hallucinations by integrating external document retrieval with large language models (LLMs). However, the effectiveness of RAG is often hindered by coreferential complexity in retrieved documents, introducing ambiguity that disrupts in-context learning. In this study, we systematically investigate how entity coreference affects both document retrieval and generative performance in RAG-based systems, focusing on retrieval relevance, contextual understanding, and overall response quality. We demonstrate that coreference resolution enhances retrieval effectiveness and improves question-answering (QA) performance. Through comparative analysis of different pooling strategies in retrieval tasks, we find that mean pooling demonstrates superior context capturing ability after applying coreference resolution. In QA tasks, we discover that smaller models benefit more from the disambiguation process, likely due to their limited inherent capacity for handling referential ambiguity. With these findings, this study aims to provide a deeper understanding of the challenges posed by coreferential complexity in RAG, providing guidance for improving retrieval and generation in knowledge-intensive AI applications.
Via

Jul 09, 2025
Abstract:We propose a unified food-domain QA framework that combines a large-scale multimodal knowledge graph (MMKG) with generative AI. Our MMKG links 13,000 recipes, 3,000 ingredients, 140,000 relations, and 14,000 images. We generate 40,000 QA pairs using 40 templates and LLaVA/DeepSeek augmentation. Joint fine-tuning of Meta LLaMA 3.1-8B and Stable Diffusion 3.5-Large improves BERTScore by 16.2\%, reduces FID by 37.8\%, and boosts CLIP alignment by 31.1\%. Diagnostic analyses-CLIP-based mismatch detection (35.2\% to 7.3\%) and LLaVA-driven hallucination checks-ensure factual and visual fidelity. A hybrid retrieval-generation strategy achieves 94.1\% accurate image reuse and 85\% adequacy in synthesis. Our results demonstrate that structured knowledge and multimodal generation together enhance reliability and diversity in food QA.
Via

Jul 09, 2025
Abstract:While diffusion models excel at image generation, their growing adoption raises critical concerns around copyright issues and model transparency. Existing attribution methods identify training examples influencing an entire image, but fall short in isolating contributions to specific elements, such as styles or objects, that matter most to stakeholders. To bridge this gap, we introduce \emph{concept-level attribution} via a novel method called \emph{Concept-TRAK}. Concept-TRAK extends influence functions with two key innovations: (1) a reformulated diffusion training loss based on diffusion posterior sampling, enabling robust, sample-specific attribution; and (2) a concept-aware reward function that emphasizes semantic relevance. We evaluate Concept-TRAK on the AbC benchmark, showing substantial improvements over prior methods. Through diverse case studies--ranging from identifying IP-protected and unsafe content to analyzing prompt engineering and compositional learning--we demonstrate how concept-level attribution yields actionable insights for responsible generative AI development and governance.
* Preprint
Via

Jul 10, 2025
Abstract:Multimodal Large Language Models (MLLMs) have significantly advanced AI-assisted medical diagnosis, but they often generate factually inconsistent responses that deviate from established medical knowledge. Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external sources, but it presents two key challenges. First, insufficient retrieval can miss critical information, whereas excessive retrieval can introduce irrelevant or misleading content, disrupting model output. Second, even when the model initially provides correct answers, over-reliance on retrieved data can lead to factual errors. To address these issues, we introduce the Multimodal Intelligent Retrieval and Augmentation (MIRA) framework, designed to optimize factual accuracy in MLLM. MIRA consists of two key components: (1) a calibrated Rethinking and Rearrangement module that dynamically adjusts the number of retrieved contexts to manage factual risk, and (2) A medical RAG framework integrating image embeddings and a medical knowledge base with a query-rewrite module for efficient multimodal reasoning. This enables the model to effectively integrate both its inherent knowledge and external references. Our evaluation of publicly available medical VQA and report generation benchmarks demonstrates that MIRA substantially enhances factual accuracy and overall performance, achieving new state-of-the-art results. Code is released at https://github.com/mbzuai-oryx/MIRA.
* ACM Multimedia 2025
Via
