Abstract:Large Language Models (LLMs) have demonstrated notable proficiency in both code generation and comprehension across multiple programming languages. However, the mechanisms underlying this proficiency remain underexplored, particularly with respect to whether distinct programming languages are processed independently or within a shared parametric region. Drawing an analogy to the specialized regions of the brain responsible for distinct cognitive functions, we introduce the concept of Coding Spot, a specialized parametric region within LLMs that facilitates coding capabilities. Our findings identify this Coding Spot and show that targeted modifications to this subset significantly affect performance on coding tasks, while largely preserving non-coding functionalities. This compartmentalization mirrors the functional specialization observed in cognitive neuroscience, where specific brain regions are dedicated to distinct tasks, suggesting that LLMs may similarly employ specialized parameter regions for different knowledge domains.
Abstract:Despite the striking advances in recent language generation performance, model-generated responses have suffered from the chronic problem of hallucinations that are either untrue or unfaithful to a given source. Especially in the task of knowledge grounded conversation, the models are required to generate informative responses, but hallucinated utterances lead to miscommunication. In particular, entity-level hallucination that causes critical misinformation and undesirable conversation is one of the major concerns. To address this issue, we propose a post-hoc refinement method called REM. It aims to enhance the quality and faithfulness of hallucinated utterances by refining them based on the source knowledge. If the generated utterance has a low source-faithfulness score with the given knowledge, REM mines the key entities in the knowledge and implicitly uses them for refining the utterances. We verify that our method reduces entity hallucination in the utterance. Also, we show the adaptability and efficacy of REM with extensive experiments and generative results. Our code is available at https://github.com/YOONNAJANG/REM.
Abstract:We explore and improve the capabilities of LLMs to generate data for grammatical error correction (GEC). When merely producing parallel sentences, their patterns are too simplistic to be valuable as a corpus. To address this issue, we propose an automated framework that includes a Subject Selector, Grammar Selector, Prompt Manager, and Evaluator. Additionally, we introduce a new dataset for GEC tasks, named \textbf{ChatLang-8}, which encompasses eight types of subject nouns and 23 types of grammar. It consists of 1 million pairs featuring human-like grammatical errors. Our experiments reveal that ChatLang-8 exhibits a more uniform pattern composition compared to existing GEC datasets. Furthermore, we observe improved model performance when using ChatLang-8 instead of existing GEC datasets. The experimental results suggest that our framework and ChatLang-8 are valuable resources for enhancing ChatGPT's data generation capabilities.
Abstract:With the recent introduction of Assistants API, it is expected that document-based language models will be actively used in various domains, especially Role-playing. However, a key challenge lies in utilizing protagonist's persona: Assistants API often fails to achieve with its search because the information extraction part is different each time and it often omits important information such as protagonist's backstory or relationships. It is hard to maintain a consistent persona simply by using the persona document as input to the Assistants API. To address the challenge of achieving stable persona consistency, we propose CharacterGPT, a novel persona reconstruction framework to alleviate the shortcomings of the Assistants API. Our method involves Character Persona Training (CPT), an effective persona rebuilding process that updates the character persona by extracting the character's traits from given summary of the novel for each character as if the story in a novel progresses. In our experiments, we ask each character to take the Big Five Inventory personality test in various settings and analyze the results. To assess whether it can think outside the box, we let each character generate short novels. Extensive experiments and human evaluation demonstrate that CharacterGPT presents new possibilities for role-playing agent research.
Abstract:Translating major language resources to build minor language resources becomes a widely-used approach. Particularly in translating complex data points composed of multiple components, it is common to translate each component separately. However, we argue that this practice often overlooks the interrelation between components within the same data point. To address this limitation, we propose a novel MT pipeline that considers the intra-data relation in implementing MT for training data. In our MT pipeline, all the components in a data point are concatenated to form a single translation sequence and subsequently reconstructed to the data components after translation. We introduce a Catalyst Statement (CS) to enhance the intra-data relation, and Indicator Token (IT) to assist the decomposition of a translated sequence into its respective data components. Through our approach, we have achieved a considerable improvement in translation quality itself, along with its effectiveness as training data. Compared with the conventional approach that translates each data component separately, our method yields better training data that enhances the performance of the trained model by 2.690 points for the web page ranking (WPR) task, and 0.845 for the question generation (QG) task in the XGLUE benchmark.
Abstract:Automatic speech recognition (ASR) outcomes serve as input for downstream tasks, substantially impacting the satisfaction level of end-users. Hence, the diagnosis and enhancement of the vulnerabilities present in the ASR model bear significant importance. However, traditional evaluation methodologies of ASR systems generate a singular, composite quantitative metric, which fails to provide comprehensive insight into specific vulnerabilities. This lack of detail extends to the post-processing stage, resulting in further obfuscation of potential weaknesses. Despite an ASR model's ability to recognize utterances accurately, subpar readability can negatively affect user satisfaction, giving rise to a trade-off between recognition accuracy and user-friendliness. To effectively address this, it is imperative to consider both the speech-level, crucial for recognition accuracy, and the text-level, critical for user-friendliness. Consequently, we propose the development of an Error Explainable Benchmark (EEB) dataset. This dataset, while considering both speech- and text-level, enables a granular understanding of the model's shortcomings. Our proposition provides a structured pathway for a more `real-world-centric' evaluation, a marked shift away from abstracted, traditional methods, allowing for the detection and rectification of nuanced system weaknesses, ultimately aiming for an improved user experience.
Abstract:We introduce the concept of "Alternative Speech" as a new way to directly combat hate speech and complement the limitations of counter-narrative. An alternative speech provides practical alternatives to hate speech in real-world scenarios by offering speech-level corrections to speakers while considering the surrounding context and promoting speakers to reform. Further, an alternative speech can combat hate speech alongside counter-narratives, offering a useful tool to address social issues such as racial discrimination and gender inequality. We propose the new concept and provide detailed guidelines for constructing the necessary dataset. Through discussion, we demonstrate that combining alternative speech and counter-narrative can be a more effective strategy for combating hate speech by complementing specificity and guiding capacity of counter-narrative. This paper presents another perspective for dealing with hate speech, offering viable remedies to complement the constraints of current approaches to mitigating harmful bias.
Abstract:This work presents KoBigBird-large, a large size of Korean BigBird that achieves state-of-the-art performance and allows long sequence processing for Korean language understanding. Without further pretraining, we only transform the architecture and extend the positional encoding with our proposed Tapered Absolute Positional Encoding Representations (TAPER). In experiments, KoBigBird-large shows state-of-the-art overall performance on Korean language understanding benchmarks and the best performance on document classification and question answering tasks for longer sequences against the competitive baseline models. We publicly release our model here.
Abstract:Large language models (LLMs) have emerged as versatile tools in various daily applications. However, they are fraught with issues that undermine their utility and trustworthiness. These include the incorporation of erroneous references (citation), the generation of hallucinated information (correctness), and the inclusion of superfluous or omission of crucial details (fluency). To ameliorate these concerns, this study makes several key contributions. First, we build a dataset to train a critic model capable of evaluating the citation, correctness, and fluency of responses generated by LLMs in QA systems. Second, we propose an automated feedback mechanism that leverages the critic model to offer real-time feedback on heterogeneous aspects of generated text. Third, we introduce a feedback learning loop that uses this critic model to iteratively improve the performance of the LLM responsible for response generation. Experimental results demonstrate the efficacy of our approach, showing substantial improvements in citation and fluency metrics for ChatGPT, including a 4% precision increase in citation and an approximately 8% enhancement in the MAUVE metric for fluency, while maintaining high levels of correctness.
Abstract:In this paper, we introduce a data-driven approach for Formality-Sensitive Machine Translation (FSMT) that caters to the unique linguistic properties of four target languages. Our methodology centers on two core strategies: 1) language-specific data handling, and 2) synthetic data generation using large-scale language models and empirical prompt engineering. This approach demonstrates a considerable improvement over the baseline, highlighting the effectiveness of data-centric techniques. Our prompt engineering strategy further improves performance by producing superior synthetic translation examples.