Abstract:We introduce the concept of "Alternative Speech" as a new way to directly combat hate speech and complement the limitations of counter-narrative. An alternative speech provides practical alternatives to hate speech in real-world scenarios by offering speech-level corrections to speakers while considering the surrounding context and promoting speakers to reform. Further, an alternative speech can combat hate speech alongside counter-narratives, offering a useful tool to address social issues such as racial discrimination and gender inequality. We propose the new concept and provide detailed guidelines for constructing the necessary dataset. Through discussion, we demonstrate that combining alternative speech and counter-narrative can be a more effective strategy for combating hate speech by complementing specificity and guiding capacity of counter-narrative. This paper presents another perspective for dealing with hate speech, offering viable remedies to complement the constraints of current approaches to mitigating harmful bias.
Abstract:Generative commonsense reasoning refers to the task of generating acceptable and logical assumptions about everyday situations based on commonsense understanding. By utilizing an existing dataset such as Korean CommonGen, language generation models can learn commonsense reasoning specific to the Korean language. However, language models often fail to consider the relationships between concepts and the deep knowledge inherent to concepts. To address these limitations, we propose a method to utilize the Korean knowledge graph data for text generation. Our experimental result shows that the proposed method can enhance the efficiency of Korean commonsense inference, thereby underlining the significance of employing supplementary data.