Abstract:Programmatically generated synthetic data has been used in differential private training for classification to enhance performance without privacy leakage. However, as the synthetic data is generated from a random process, the distribution of real data and the synthetic data are distinguishable and difficult to transfer. Therefore, the model trained with the synthetic data generates unrealistic random images, raising challenges to adapt the synthetic data for generative models. In this work, we propose DP-SynGen, which leverages programmatically generated synthetic data in diffusion models to address this challenge. By exploiting the three stages of diffusion models(coarse, context, and cleaning) we identify stages where synthetic data can be effectively utilized. We theoretically and empirically verified that cleaning and coarse stages can be trained without private data, replacing them with synthetic data to reduce the privacy budget. The experimental results show that DP-SynGen improves the quality of generative data by mitigating the negative impact of privacy-induced noise on the generation process.
Abstract:Neural additive model (NAM) is a recently proposed explainable artificial intelligence (XAI) method that utilizes neural network-based architectures. Given the advantages of neural networks, NAMs provide intuitive explanations for their predictions with high model performance. In this paper, we analyze a critical yet overlooked phenomenon: NAMs often produce inconsistent explanations, even when using the same architecture and dataset. Traditionally, such inconsistencies have been viewed as issues to be resolved. However, we argue instead that these inconsistencies can provide valuable explanations within the given data model. Through a simple theoretical framework, we demonstrate that these inconsistencies are not mere artifacts but emerge naturally in datasets with multiple important features. To effectively leverage this information, we introduce a novel framework, Bayesian Neural Additive Model (BayesNAM), which integrates Bayesian neural networks and feature dropout, with theoretical proof demonstrating that feature dropout effectively captures model inconsistencies. Our experiments demonstrate that BayesNAM effectively reveals potential problems such as insufficient data or structural limitations of the model, providing more reliable explanations and potential remedies.
Abstract:Accurate prediction of Global Warming Potential (GWP) is essential for assessing the environmental impact of chemical processes and materials. Traditional GWP prediction models rely predominantly on molecular structure, overlooking critical process-related information. In this study, we present an integrative GWP prediction model that combines molecular descriptors (MACCS keys and Mordred descriptors) with process information (process title, description, and location) to improve predictive accuracy and interpretability. Using a deep neural network (DNN) model, we achieved an R-squared of 86% on test data with Mordred descriptors, process location, and description information, representing a 25% improvement over the previous benchmark of 61%; XAI analysis further highlighted the significant role of process title embeddings in enhancing model predictions. To enhance interpretability, we employed a Kolmogorov-Arnold Network (KAN) to derive a symbolic formula for GWP prediction, capturing key molecular and process features and providing a transparent, interpretable alternative to black-box models, enabling users to gain insights into the molecular and process factors influencing GWP. Error analysis showed that the model performs reliably in densely populated data ranges, with increased uncertainty for higher GWP values. This analysis allows users to manage prediction uncertainty effectively, supporting data-driven decision-making in chemical and process design. Our results suggest that integrating both molecular and process-level information in GWP prediction models yields substantial gains in accuracy and interpretability, offering a valuable tool for sustainability assessments. Future work may extend this approach to additional environmental impact categories and refine the model to further enhance its predictive reliability.
Abstract:For the efficient and safe use of lithium-ion batteries, diagnosing their current state and predicting future states are crucial. Although there exist many models for the prediction of battery cycle life, they typically have very complex input structures, making it very difficult and expensive to develop such models. As an alternative, in this work, a model that predicts the nominal end-of-life using only operating conditions as input is proposed. Specifically, a total of 100 battery degradation data were generated using a pseudo two-dimensional model with three major operating conditions: charging C-rate, ambient temperature and depth-of-discharge. Then, a Gaussian process regression-based model was developed to predict the nominal end-of-life using these operating conditions as the inputs. To improve the model accuracy, novel kernels were proposed, which are tailored to each operating condition. The proposed kernels reduced the lifetime prediction error by 46.62% compared to the conventional kernels.
Abstract:In this paper, we study an under-explored area of language and vocabulary learning: keyword mnemonics, a technique for memorizing vocabulary through memorable associations with a target word via a verbal cue. Typically, creating verbal cues requires extensive human effort and is quite time-consuming, necessitating an automated method that is more scalable. We propose a novel overgenerate-and-rank method via prompting large language models (LLMs) to generate verbal cues and then ranking them according to psycholinguistic measures and takeaways from a pilot user study. To assess cue quality, we conduct both an automated evaluation of imageability and coherence, as well as a human evaluation involving English teachers and learners. Results show that LLM-generated mnemonics are comparable to human-generated ones in terms of imageability, coherence, and perceived usefulness, but there remains plenty of room for improvement due to the diversity in background and preference among language learners.
Abstract:Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques. Recently, diffusion models have emerged as the de facto approach for time series generation, emphasizing diverse synthesis scenarios based on historical or correlated time series data streams. Since time series have unique characteristics, such as fixed time order and data scaling, standard Gaussian prior might be ill-suited for general time series generation. In this paper, we exploit the usage of diverse prior distributions for synthesis. Then, we propose TimeBridge, a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions. Our model covers a wide range of scenarios in time series diffusion models, which leverages (i) data- and time-dependent priors for unconditional synthesis, and (ii) data-scale preserving synthesis with a constraint as a prior for conditional generation. Experimentally, our model achieves state-of-the-art performance in both unconditional and conditional time series generation tasks.
Abstract:In this paper, we introduce a memory-efficient CNN (convolutional neural network), which enables resource-constrained low-end embedded and IoT devices to perform on-device vision tasks, such as image classification and object detection, using extremely low memory, i.e., only 63 KB on ImageNet classification. Based on the bottleneck block of MobileNet, we propose three design principles that significantly curtail the peak memory usage of a CNN so that it can fit the limited KB memory of the low-end device. First, 'input segmentation' divides an input image into a set of patches, including the central patch overlapped with the others, reducing the size (and memory requirement) of a large input image. Second, 'patch tunneling' builds independent tunnel-like paths consisting of multiple bottleneck blocks per patch, penetrating through the entire model from an input patch to the last layer of the network, maintaining lightweight memory usage throughout the whole network. Lastly, 'bottleneck reordering' rearranges the execution order of convolution operations inside the bottleneck block such that the memory usage remains constant regardless of the size of the convolution output channels. The experiment result shows that the proposed network classifies ImageNet with extremely low memory (i.e., 63 KB) while achieving competitive top-1 accuracy (i.e., 61.58\%). To the best of our knowledge, the memory usage of the proposed network is far smaller than state-of-the-art memory-efficient networks, i.e., up to 89x and 3.1x smaller than MobileNet (i.e., 5.6 MB) and MCUNet (i.e., 196 KB), respectively.
Abstract:Time series forecasting is crucial for applications across multiple domains and various scenarios. Although Transformer models have dramatically shifted the landscape of forecasting, their effectiveness remains debated. Recent findings have indicated that simpler linear models might outperform complex Transformer-based approaches, highlighting the potential for more streamlined architectures. In this paper, we shift focus from the overall architecture of the Transformer to the effectiveness of self-attentions for time series forecasting. To this end, we introduce a new architecture, Cross-Attention-only Time Series transformer (CATS), that rethinks the traditional Transformer framework by eliminating self-attention and leveraging cross-attention mechanisms instead. By establishing future horizon-dependent parameters as queries and enhanced parameter sharing, our model not only improves long-term forecasting accuracy but also reduces the number of parameters and memory usage. Extensive experiment across various datasets demonstrates that our model achieves superior performance with the lowest mean squared error and uses fewer parameters compared to existing models.
Abstract:Intelligent Tutoring Systems (ITSs) often contain an automated feedback component, which provides a predefined feedback message to students when they detect a predefined error. To such a feedback component, we often resort to template-based approaches. These approaches require significant effort from human experts to detect a limited number of possible student errors and provide corresponding feedback. This limitation is exemplified in open-ended math questions, where there can be a large number of different incorrect errors. In our work, we examine the capabilities of large language models (LLMs) to generate feedback for open-ended math questions, similar to that of an established ITS that uses a template-based approach. We fine-tune both open-source and proprietary LLMs on real student responses and corresponding ITS-provided feedback. We measure the quality of the generated feedback using text similarity metrics. We find that open-source and proprietary models both show promise in replicating the feedback they see during training, but do not generalize well to previously unseen student errors. These results suggest that despite being able to learn the formatting of feedback, LLMs are not able to fully understand mathematical errors made by students.
Abstract:Multiple choice questions (MCQs) are a popular method for evaluating students' knowledge due to their efficiency in administration and grading. Crafting high-quality math MCQs is a labor-intensive process that requires educators to formulate precise stems and plausible distractors. Recent advances in large language models (LLMs) have sparked interest in automating MCQ creation, but challenges persist in ensuring mathematical accuracy and addressing student errors. This paper introduces a prototype tool designed to facilitate collaboration between LLMs and educators for streamlining the math MCQ generation process. We conduct a pilot study involving math educators to investigate how the tool can help them simplify the process of crafting high-quality math MCQs. We found that while LLMs can generate well-formulated question stems, their ability to generate distractors that capture common student errors and misconceptions is limited. Nevertheless, a human-AI collaboration has the potential to enhance the efficiency and effectiveness of MCQ generation.