Abstract:Time series generation is widely used in real-world applications such as simulation, data augmentation, and hypothesis test techniques. Recently, diffusion models have emerged as the de facto approach for time series generation, emphasizing diverse synthesis scenarios based on historical or correlated time series data streams. Since time series have unique characteristics, such as fixed time order and data scaling, standard Gaussian prior might be ill-suited for general time series generation. In this paper, we exploit the usage of diverse prior distributions for synthesis. Then, we propose TimeBridge, a framework that enables flexible synthesis by leveraging diffusion bridges to learn the transport between chosen prior and data distributions. Our model covers a wide range of scenarios in time series diffusion models, which leverages (i) data- and time-dependent priors for unconditional synthesis, and (ii) data-scale preserving synthesis with a constraint as a prior for conditional generation. Experimentally, our model achieves state-of-the-art performance in both unconditional and conditional time series generation tasks.