Abstract:One of the key strengths of Large Language Models (LLMs) is their ability to interact with humans by generating appropriate responses to given instructions. This ability, known as instruction-following capability, has established a foundation for the use of LLMs across various fields and serves as a crucial metric for evaluating their performance. While numerous evaluation benchmarks have been developed, most focus solely on clear and coherent instructions. However, we have noted that LLMs can become easily distracted by instruction-formatted statements, which may lead to an oversight of their instruction comprehension skills. To address this issue, we introduce the Intention of Instruction (IoInst) benchmark. This benchmark evaluates LLMs' capacity to remain focused and understand instructions without being misled by extraneous instructions. The primary objective of this benchmark is to identify the appropriate instruction that accurately guides the generation of a given context. Our findings suggest that even recently introduced state-of-the-art models still lack instruction understanding capability. Along with the proposition of IoInst in this study, we also present broad analyses of the several strategies potentially applicable to IoInst.
Abstract:Automatic speech recognition (ASR) outcomes serve as input for downstream tasks, substantially impacting the satisfaction level of end-users. Hence, the diagnosis and enhancement of the vulnerabilities present in the ASR model bear significant importance. However, traditional evaluation methodologies of ASR systems generate a singular, composite quantitative metric, which fails to provide comprehensive insight into specific vulnerabilities. This lack of detail extends to the post-processing stage, resulting in further obfuscation of potential weaknesses. Despite an ASR model's ability to recognize utterances accurately, subpar readability can negatively affect user satisfaction, giving rise to a trade-off between recognition accuracy and user-friendliness. To effectively address this, it is imperative to consider both the speech-level, crucial for recognition accuracy, and the text-level, critical for user-friendliness. Consequently, we propose the development of an Error Explainable Benchmark (EEB) dataset. This dataset, while considering both speech- and text-level, enables a granular understanding of the model's shortcomings. Our proposition provides a structured pathway for a more `real-world-centric' evaluation, a marked shift away from abstracted, traditional methods, allowing for the detection and rectification of nuanced system weaknesses, ultimately aiming for an improved user experience.
Abstract:Generative commonsense reasoning refers to the task of generating acceptable and logical assumptions about everyday situations based on commonsense understanding. By utilizing an existing dataset such as Korean CommonGen, language generation models can learn commonsense reasoning specific to the Korean language. However, language models often fail to consider the relationships between concepts and the deep knowledge inherent to concepts. To address these limitations, we propose a method to utilize the Korean knowledge graph data for text generation. Our experimental result shows that the proposed method can enhance the efficiency of Korean commonsense inference, thereby underlining the significance of employing supplementary data.
Abstract:Data-centric AI approach aims to enhance the model performance without modifying the model and has been shown to impact model performance positively. While recent attention has been given to data-centric AI based on synthetic data, due to its potential for performance improvement, data-centric AI has long been exclusively validated using real-world data and publicly available benchmark datasets. In respect of this, data-centric AI still highly depends on real-world data, and the verification of models using synthetic data has not yet been thoroughly carried out. Given the challenges above, we ask the question: Does data quality control (noise injection and balanced data), a data-centric AI methodology acclaimed to have a positive impact, exhibit the same positive impact in models trained solely with synthetic data? To address this question, we conducted comparative analyses between models trained on synthetic and real-world data based on grammatical error correction (GEC) task. Our experimental results reveal that the data quality control method has a positive impact on models trained with real-world data, as previously reported in existing studies, while a negative impact is observed in models trained solely on synthetic data.
Abstract:Leaderboard systems allow researchers to objectively evaluate Natural Language Processing (NLP) models and are typically used to identify models that exhibit superior performance on a given task in a predetermined setting. However, we argue that evaluation on a given test dataset is just one of many performance indications of the model. In this paper, we claim leaderboard competitions should also aim to identify models that exhibit the best performance in a real-world setting. We highlight three issues with current leaderboard systems: (1) the use of a single, static test set, (2) discrepancy between testing and real-world application (3) the tendency for leaderboard-centric competition to be biased towards the test set. As a solution, we propose a new paradigm of leaderboard systems that addresses these issues of current leaderboard system. Through this study, we hope to induce a paradigm shift towards more real -world-centric leaderboard competitions.
Abstract:With the recent advance in neural machine translation demonstrating its importance, research on quality estimation (QE) has been steadily progressing. QE aims to automatically predict the quality of machine translation (MT) output without reference sentences. Despite its high utility in the real world, there remain several limitations concerning manual QE data creation: inevitably incurred non-trivial costs due to the need for translation experts, and issues with data scaling and language expansion. To tackle these limitations, we present QUAK, a Korean-English synthetic QE dataset generated in a fully automatic manner. This consists of three sub-QUAK datasets QUAK-M, QUAK-P, and QUAK-H, produced through three strategies that are relatively free from language constraints. Since each strategy requires no human effort, which facilitates scalability, we scale our data up to 1.58M for QUAK-P, H and 6.58M for QUAK-M. As an experiment, we quantitatively analyze word-level QE results in various ways while performing statistical analysis. Moreover, we show that datasets scaled in an efficient way also contribute to performance improvements by observing meaningful performance gains in QUAK-M, P when adding data up to 1.58M.
Abstract:As pre-trained language models become more resource-demanding, the inequality between resource-rich languages such as English and resource-scarce languages is worsening. This can be attributed to the fact that the amount of available training data in each language follows the power-law distribution, and most of the languages belong to the long tail of the distribution. Some research areas attempt to mitigate this problem. For example, in cross-lingual transfer learning and multilingual training, the goal is to benefit long-tail languages via the knowledge acquired from resource-rich languages. Although being successful, existing work has mainly focused on experimenting on as many languages as possible. As a result, targeted in-depth analysis is mostly absent. In this study, we focus on a single low-resource language and perform extensive evaluation and probing experiments using cross-lingual post-training (XPT). To make the transfer scenario challenging, we choose Korean as the target language, as it is a language isolate and thus shares almost no typology with English. Results show that XPT not only outperforms or performs on par with monolingual models trained with orders of magnitudes more data but also is highly efficient in the transfer process.
Abstract:Data building for automatic post-editing (APE) requires extensive and expert-level human effort, as it contains an elaborate process that involves identifying errors in sentences and providing suitable revisions. Hence, we develop a self-supervised data generation tool, deployable as a web application, that minimizes human supervision and constructs personalized APE data from a parallel corpus for several language pairs with English as the target language. Data-centric APE research can be conducted using this tool, involving many language pairs that have not been studied thus far owing to the lack of suitable data.
Abstract:Building of data for quality estimation (QE) training is expensive and requires significant human labor. In this study, we focus on a data-centric approach while performing QE, and subsequently propose a fully automatic pseudo-QE dataset generation tool that generates QE datasets by receiving only monolingual or parallel corpus as the input. Consequently, the QE performance is enhanced either by data augmentation or by encouraging multiple language pairs to exploit the applicability of QE. Further, we intend to publicly release this user friendly QE dataset generation tool as we believe this tool provides a new, inexpensive method to the community for developing QE datasets.
Abstract:Generative commonsense reasoning is the capability of a language model to generate a sentence with a given concept-set that is based on commonsense knowledge. However, generative language models still struggle to provide outputs, and the training set does not contain patterns that are sufficient for generative commonsense reasoning. In this paper, we propose a data-centric method that uses automatic knowledge augmentation to extend commonsense knowledge using a machine knowledge generator. This method can generate semi-golden sentences that improve the generative commonsense reasoning of a language model without architecture modifications. Furthermore, this approach is a model-agnostic method and does not require human effort for data construction.