Abstract:Deep neural networks (DNNs) are vulnerable to adversarial examples crafted by well-designed perturbations. This could lead to disastrous results on critical applications such as self-driving cars, surveillance security, and medical diagnosis. At present, adversarial training is one of the most effective defenses against adversarial examples. However, traditional adversarial training makes it difficult to achieve a good trade-off between clean accuracy and robustness since spurious features are still learned by DNNs. The intrinsic reason is that traditional adversarial training makes it difficult to fully learn core features from adversarial examples when adversarial noise and clean examples cannot be disentangled. In this paper, we disentangle the adversarial examples into natural and perturbed patterns by bit-plane slicing. We assume the higher bit-planes represent natural patterns and the lower bit-planes represent perturbed patterns, respectively. We propose a Feature-Focusing Adversarial Training (F$^2$AT), which differs from previous work in that it enforces the model to focus on the core features from natural patterns and reduce the impact of spurious features from perturbed patterns. The experimental results demonstrated that F$^2$AT outperforms state-of-the-art methods in clean accuracy and adversarial robustness.
Abstract:Automated code vulnerability detection has gained increasing attention in recent years. The deep learning (DL)-based methods, which implicitly learn vulnerable code patterns, have proven effective in vulnerability detection. The performance of DL-based methods usually relies on the quantity and quality of labeled data. However, the current labeled data are generally automatically collected, such as crawled from human-generated commits, making it hard to ensure the quality of the labels. Prior studies have demonstrated that the non-vulnerable code (i.e., negative labels) tends to be unreliable in commonly-used datasets, while vulnerable code (i.e., positive labels) is more determined. Considering the large numbers of unlabeled data in practice, it is necessary and worth exploring to leverage the positive data and large numbers of unlabeled data for more accurate vulnerability detection. In this paper, we focus on the Positive and Unlabeled (PU) learning problem for vulnerability detection and propose a novel model named PILOT, i.e., PositIve and unlabeled Learning mOdel for vulnerability deTection. PILOT only learns from positive and unlabeled data for vulnerability detection. It mainly contains two modules: (1) A distance-aware label selection module, aiming at generating pseudo-labels for selected unlabeled data, which involves the inter-class distance prototype and progressive fine-tuning; (2) A mixed-supervision representation learning module to further alleviate the influence of noise and enhance the discrimination of representations.
Abstract:With the development of hardware and algorithms, ASR(Automatic Speech Recognition) systems evolve a lot. As The models get simpler, the difficulty of development and deployment become easier, ASR systems are getting closer to our life. On the one hand, we often use APPs or APIs of ASR to generate subtitles and record meetings. On the other hand, smart speaker and self-driving car rely on ASR systems to control AIoT devices. In past few years, there are a lot of works on adversarial examples attacks against ASR systems. By adding a small perturbation to the waveforms, the recognition results make a big difference. In this paper, we describe the development of ASR system, different assumptions of attacks, and how to evaluate these attacks. Next, we introduce the current works on adversarial examples attacks from two attack assumptions: white-box attack and black-box attack. Different from other surveys, we pay more attention to which layer they perturb waveforms in ASR system, the relationship between these attacks, and their implementation methods. We focus on the effect of their works.
Abstract:Recent studies show deep neural networks (DNNs) are extremely vulnerable to the elaborately designed adversarial examples. Adversarial learning with those adversarial examples has been proved as one of the most effective methods to defend against such an attack. At present, most existing adversarial examples generation methods are based on first-order gradients, which can hardly further improve models' robustness, especially when facing second-order adversarial attacks. Compared with first-order gradients, second-order gradients provide a more accurate approximation of the loss landscape with respect to natural examples. Inspired by this, our work crafts second-order adversarial examples and uses them to train DNNs. Nevertheless, second-order optimization involves time-consuming calculation for Hessian-inverse. We propose an approximation method through transforming the problem into an optimization in the Krylov subspace, which remarkably reduce the computational complexity to speed up the training procedure. Extensive experiments conducted on the MINIST and CIFAR-10 datasets show that our adversarial learning with second-order adversarial examples outperforms other fisrt-order methods, which can improve the model robustness against a wide range of attacks.
Abstract:Recent studies have found that removing the norm-bounded projection and increasing search steps in adversarial training can significantly improve robustness. However, we observe that a too large number of search steps can hurt accuracy. We aim to obtain strong robustness efficiently using fewer steps. Through a toy experiment, we find that perturbing the clean data to the decision boundary but not crossing it does not degrade the test accuracy. Inspired by this, we propose friendly adversarial data augmentation (FADA) to generate friendly adversarial data. On top of FADA, we propose geometry-aware adversarial training (GAT) to perform adversarial training on friendly adversarial data so that we can save a large number of search steps. Comprehensive experiments across two widely used datasets and three pre-trained language models demonstrate that GAT can obtain stronger robustness via fewer steps. In addition, we provide extensive empirical results and in-depth analyses on robustness to facilitate future studies.
Abstract:Recent studies have revealed that neural combinatorial optimization (NCO) has advantages over conventional algorithms in many combinatorial optimization problems such as routing, but it is less efficient for more complicated optimization tasks such as packing which involves mutually conditioned action spaces. In this paper, we propose a Recurrent Conditional Query Learning (RCQL) method to solve both 2D and 3D packing problems. We first embed states by a recurrent encoder, and then adopt attention with conditional queries from previous actions. The conditional query mechanism fills the information gap between learning steps, which shapes the problem as a Markov decision process. Benefiting from the recurrence, a single RCQL model is capable of handling different sizes of packing problems. Experiment results show that RCQL can effectively learn strong heuristics for offline and online strip packing problems (SPPs), outperforming a wide range of baselines in space utilization ratio. RCQL reduces the average bin gap ratio by 1.83% in offline 2D 40-box cases and 7.84% in 3D cases compared with state-of-the-art methods. Meanwhile, our method also achieves 5.64% higher space utilization ratio for SPPs with 1000 items than the state of the art.
Abstract:Recent work shows that deep neural networks are vulnerable to adversarial examples. Much work studies adversarial example generation, while very little work focuses on more critical adversarial defense. Existing adversarial detection methods usually make assumptions about the adversarial example and attack method (e.g., the word frequency of the adversarial example, the perturbation level of the attack method). However, this limits the applicability of the detection method. To this end, we propose TREATED, a universal adversarial detection method that can defend against attacks of various perturbation levels without making any assumptions. TREATED identifies adversarial examples through a set of well-designed reference models. Extensive experiments on three competitive neural networks and two widely used datasets show that our method achieves better detection performance than baselines. We finally conduct ablation studies to verify the effectiveness of our method.
Abstract:Overconfident predictions on out-of-distribution (OOD) samples is a thorny issue for deep neural networks. The key to resolve the OOD overconfidence issue inherently is to build a subset of OOD samples and then suppress predictions on them. This paper proposes the Chamfer OOD examples (CODEs), whose distribution is close to that of in-distribution samples, and thus could be utilized to alleviate the OOD overconfidence issue effectively by suppressing predictions on them. To obtain CODEs, we first generate seed OOD examples via slicing&splicing operations on in-distribution samples from different categories, and then feed them to the Chamfer generative adversarial network for distribution transformation, without accessing to any extra data. Training with suppressing predictions on CODEs is validated to alleviate the OOD overconfidence issue largely without hurting classification accuracy, and outperform the state-of-the-art methods. Besides, we demonstrate CODEs are useful for improving OOD detection and classification.
Abstract:Adversarial training is wildly considered as the most effective way to defend against adversarial examples. However, existing adversarial training methods consume unbearable time cost, since they need to generate adversarial examples in the input space, which accounts for the main part of total time-consuming. For speeding up the training process, we propose a novel adversarial training method that does not need to generate real adversarial examples. We notice that a clean example is closer to the decision boundary of the class with the second largest logit component than any other class besides its own class. Thus, by adding perturbations to logits to generate Endogenous Adversarial Examples(EAEs) -- adversarial examples in the latent space, it can avoid calculating gradients to speed up the training process. We further gain a deep insight into the existence of EAEs by the theory of manifold. To guarantee the added perturbation is within the range of constraint, we use statistical distributions to select seed examples to craft EAEs. Extensive experiments are conducted on CIFAR-10 and ImageNet, and the results show that compare with state-of-the-art "Free" and "Fast" methods, our EAE adversarial training not only shortens the training time, but also enhances the robustness of the model. Moreover, the EAE adversarial training has little impact on the accuracy of clean examples than the existing methods.
Abstract:The vulnerability of deep neural networks (DNNs) for adversarial examples have attracted more attention. Many algorithms are proposed to craft powerful adversarial examples. However, these algorithms modifying the global or local region of pixels without taking into account network explanations. Hence, the perturbations are redundancy and easily detected by human eyes. In this paper, we propose a novel method to generate local region perturbations. The main idea is to find the contributing feature regions (CFRs) of images based on network explanations for perturbations. Due to the network explanations, the perturbations added to the CFRs are more effective than other regions. In our method, a soft mask matrix is designed to represent the CFRs for finely characterizing the contributions of each pixel. Based on this soft mask, we develop a new objective function with inverse temperature to search for optimal perturbations in CFRs. Extensive experiments are conducted on CIFAR-10 and ILSVRC2012, which demonstrate the effectiveness, including attack success rate, imperceptibility,and transferability.