Abstract:In the rapidly evolving field of e-commerce, the effectiveness of search re-ranking models is crucial for enhancing user experience and driving conversion rates. Despite significant advancements in feature representation and model architecture, the integration of multimodal information remains underexplored. This study addresses this gap by investigating the computation and fusion of textual and visual information in the context of re-ranking. We propose \textbf{A}dvancing \textbf{R}e-Ranking with \textbf{M}ulti\textbf{m}odal Fusion and \textbf{T}arget-Oriented Auxiliary Tasks (ARMMT), which integrates an attention-based multimodal fusion technique and an auxiliary ranking-aligned task to enhance item representation and improve targeting capabilities. This method not only enriches the understanding of product attributes but also enables more precise and personalized recommendations. Experimental evaluations on JD.com's search platform demonstrate that ARMMT achieves state-of-the-art performance in multimodal information integration, evidenced by a 0.22\% increase in the Conversion Rate (CVR), significantly contributing to Gross Merchandise Volume (GMV). This pioneering approach has the potential to revolutionize e-commerce re-ranking, leading to elevated user satisfaction and business growth.
Abstract:Generative retrieval (GR) has emerged as a transformative paradigm in search and recommender systems, leveraging numeric-based identifier representations to enhance efficiency and generalization. Notably, methods like TIGER employing Residual Quantization-based Semantic Identifiers (RQ-SID), have shown significant promise in e-commerce scenarios by effectively managing item IDs. However, a critical issue termed the "\textbf{Hourglass}" phenomenon, occurs in RQ-SID, where intermediate codebook tokens become overly concentrated, hindering the full utilization of generative retrieval methods. This paper analyses and addresses this problem by identifying data sparsity and long-tailed distribution as the primary causes. Through comprehensive experiments and detailed ablation studies, we analyze the impact of these factors on codebook utilization and data distribution. Our findings reveal that the "Hourglass" phenomenon substantially impacts the performance of RQ-SID in generative retrieval. We propose effective solutions to mitigate this issue, thereby significantly enhancing the effectiveness of generative retrieval in real-world E-commerce applications.
Abstract:Traffic allocation is a process of redistributing natural traffic to products by adjusting their positions in the post-search phase, aimed at effectively fostering merchant growth, precisely meeting customer demands, and ensuring the maximization of interests across various parties within e-commerce platforms. Existing methods based on learning to rank neglect the long-term value of traffic allocation, whereas approaches of reinforcement learning suffer from balancing multiple objectives and the difficulties of cold starts within realworld data environments. To address the aforementioned issues, this paper propose a multi-objective deep reinforcement learning framework consisting of multi-objective Q-learning (MOQ), a decision fusion algorithm (DFM) based on the cross-entropy method(CEM), and a progressive data augmentation system(PDA). Specifically. MOQ constructs ensemble RL models, each dedicated to an objective, such as click-through rate, conversion rate, etc. These models individually determine the position of items as actions, aiming to estimate the long-term value of multiple objectives from an individual perspective. Then we employ DFM to dynamically adjust weights among objectives to maximize long-term value, addressing temporal dynamics in objective preferences in e-commerce scenarios. Initially, PDA trained MOQ with simulated data from offline logs. As experiments progressed, it strategically integrated real user interaction data, ultimately replacing the simulated dataset to alleviate distributional shifts and the cold start problem. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of MODRL-TA, and we have successfully deployed MODRL-TA on an e-commerce search platform.
Abstract:Re-ranking is a process of rearranging ranking list to more effectively meet user demands by accounting for the interrelationships between items. Existing methods predominantly enhance the precision of search results, often at the expense of diversity, leading to outcomes that may not fulfill the varied needs of users. Conversely, methods designed to promote diversity might compromise the precision of the results, failing to satisfy the users' requirements for accuracy. To alleviate the above problems, this paper proposes a Preference-oriented Diversity Model Based on Mutual-information (PODM-MI), which consider both accuracy and diversity in the re-ranking process. Specifically, PODM-MI adopts Multidimensional Gaussian distributions based on variational inference to capture users' diversity preferences with uncertainty. Then we maximize the mutual information between the diversity preferences of the users and the candidate items using the maximum variational inference lower bound to enhance their correlations. Subsequently, we derive a utility matrix based on the correlations, enabling the adaptive ranking of items in line with user preferences and establishing a balance between the aforementioned objectives. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of PODM-MI, and we have successfully deployed PODM-MI on an e-commerce search platform.
Abstract:In large e-commerce platforms, search systems are typically composed of a series of modules, including recall, pre-ranking, and ranking phases. The pre-ranking phase, serving as a lightweight module, is crucial for filtering out the bulk of products in advance for the downstream ranking module. Industrial efforts on optimizing the pre-ranking model have predominantly focused on enhancing ranking consistency, model structure, and generalization towards long-tail items. Beyond these optimizations, meeting the system performance requirements presents a significant challenge. Contrasting with existing industry works, we propose a novel method: a Generalizable and RAnk-ConsistEnt Pre-Ranking Model (GRACE), which achieves: 1) Ranking consistency by introducing multiple binary classification tasks that predict whether a product is within the top-k results as estimated by the ranking model, which facilitates the addition of learning objectives on common point-wise ranking models; 2) Generalizability through contrastive learning of representation for all products by pre-training on a subset of ranking product embeddings; 3) Ease of implementation in feature construction and online deployment. Our extensive experiments demonstrate significant improvements in both offline metrics and online A/B test: a 0.75% increase in AUC and a 1.28% increase in CVR.
Abstract:Query intent classification, which aims at assisting customers to find desired products, has become an essential component of the e-commerce search. Existing query intent classification models either design more exquisite models to enhance the representation learning of queries or explore label-graph and multi-task to facilitate models to learn external information. However, these models cannot capture multi-granularity matching features from queries and categories, which makes them hard to mitigate the gap in the expression between informal queries and categories. This paper proposes a Multi-granularity Matching Attention Network (MMAN), which contains three modules: a self-matching module, a char-level matching module, and a semantic-level matching module to comprehensively extract features from the query and a query-category interaction matrix. In this way, the model can eliminate the difference in expression between queries and categories for query intent classification. We conduct extensive offline and online A/B experiments, and the results show that the MMAN significantly outperforms the strong baselines, which shows the superiority and effectiveness of MMAN. MMAN has been deployed in production and brings great commercial value for our company.
Abstract:Retrieving relevant items that match users' queries from billion-scale corpus forms the core of industrial e-commerce search systems, in which embedding-based retrieval (EBR) methods are prevailing. These methods adopt a two-tower framework to learn embedding vectors for query and item separately and thus leverage efficient approximate nearest neighbor (ANN) search to retrieve relevant items. However, existing EBR methods usually ignore inconsistent user behaviors in industrial multi-stage search systems, resulting in insufficient retrieval efficiency with a low commercial return. To tackle this challenge, we propose to improve EBR methods by learning Multi-level Multi-Grained Semantic Embeddings(MMSE). We propose the multi-stage information mining to exploit the ordered, clicked, unclicked and random sampled items in practical user behavior data, and then capture query-item similarity via a post-fusion strategy. We then propose multi-grained learning objectives that integrate the retrieval loss with global comparison ability and the ranking loss with local comparison ability to generate semantic embeddings. Both experiments on a real-world billion-scale dataset and online A/B tests verify the effectiveness of MMSE in achieving significant performance improvements on metrics such as offline recall and online conversion rate (CVR).
Abstract:In this paper, we propose a robust multilingual model to improve the quality of search results. Our model not only leverage the processed class-balanced dataset, but also benefit from multitask pre-training that leads to more general representations. In pre-training stage, we adopt mlm task, classification task and contrastive learning task to achieve considerably performance. In fine-tuning stage, we use confident learning, exponential moving average method (EMA), adversarial training (FGM) and regularized dropout strategy (R-Drop) to improve the model's generalization and robustness. Moreover, we use a multi-granular semantic unit to discover the queries and products textual metadata for enhancing the representation of the model. Our approach obtained competitive results and ranked top-8 in three tasks. We release the source code and pre-trained models associated with this work.
Abstract:BERT-style models pre-trained on the general corpus (e.g., Wikipedia) and fine-tuned on specific task corpus, have recently emerged as breakthrough techniques in many NLP tasks: question answering, text classification, sequence labeling and so on. However, this technique may not always work, especially for two scenarios: a corpus that contains very different text from the general corpus Wikipedia, or a task that learns embedding spacial distribution for a specific purpose (e.g., approximate nearest neighbor search). In this paper, to tackle the above two scenarios that we have encountered in an industrial e-commerce search system, we propose customized and novel pre-training tasks for two critical modules: user intent detection and semantic embedding retrieval. The customized pre-trained models after fine-tuning, being less than 10% of BERT-base's size in order to be feasible for cost-efficient CPU serving, significantly improve the other baseline models: 1) no pre-training model and 2) fine-tuned model from the official pre-trained BERT using general corpus, on both offline datasets and online system. We have open sourced our datasets for the sake of reproducibility and future works.
Abstract:Graph convolution networks (GCN), which recently becomes new state-of-the-art method for graph node classification, recommendation and other applications, has not been successfully applied to industrial-scale search engine yet. In this proposal, we introduce our approach, namely SearchGCN, for embedding-based candidate retrieval in one of the largest e-commerce search engine in the world. Empirical studies demonstrate that SearchGCN learns better embedding representations than existing methods, especially for long tail queries and items. Thus, SearchGCN has been deployed into JD.com's search production since July 2020.