Abstract:Face reenactment refers to the process of transferring the pose and facial expressions from a reference (driving) video onto a static facial (source) image while maintaining the original identity of the source image. Previous research in this domain has made significant progress by training controllable deep generative models to generate faces based on specific identity, pose and expression conditions. However, the mechanisms used in these methods to control pose and expression often inadvertently introduce identity information from the driving video, while also causing a loss of expression-related details. This paper proposes a new method based on Stable Diffusion, called AniFaceDiff, incorporating a new conditioning module for high-fidelity face reenactment. First, we propose an enhanced 2D facial snapshot conditioning approach by facial shape alignment to prevent the inclusion of identity information from the driving video. Then, we introduce an expression adapter conditioning mechanism to address the potential loss of expression-related information. Our approach effectively preserves pose and expression fidelity from the driving video while retaining the identity and fine details of the source image. Through experiments on the VoxCeleb dataset, we demonstrate that our method achieves state-of-the-art results in face reenactment, showcasing superior image quality, identity preservation, and expression accuracy, especially for cross-identity scenarios. Considering the ethical concerns surrounding potential misuse, we analyze the implications of our method, evaluate current state-of-the-art deepfake detectors, and identify their shortcomings to guide future research.
Abstract:Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s). Although the main focus of general-purpose LLMs is not code generation, they have shown promising results in the domain. However, the usefulness of LLMs in an academic software engineering project has not been fully explored yet. In this study, we explore the usefulness of LLMs for 214 students working in teams consisting of up to six members. Notably, in the academic course through which this study is conducted, students were encouraged to integrate LLMs into their development tool-chain, in contrast to most other academic courses that explicitly prohibit the use of LLMs. In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base. We also conduct a perception study to gain insights into the perceived usefulness, influencing factors, and future outlook of LLM from a computer science student's perspective. Our findings suggest that LLMs can play a crucial role in the early stages of software development, especially in generating foundational code structures, and helping with syntax and error debugging. These insights provide us with a framework on how to effectively utilize LLMs as a tool to enhance the productivity of software engineering students, and highlight the necessity of shifting the educational focus toward preparing students for successful human-AI collaboration.
Abstract:This paper describes the results of the IEEE BigData 2023 Keystroke Verification Challenge (KVC), that considers the biometric verification performance of Keystroke Dynamics (KD), captured as tweet-long sequences of variable transcript text from over 185,000 subjects. The data are obtained from two of the largest public databases of KD up to date, the Aalto Desktop and Mobile Keystroke Databases, guaranteeing a minimum amount of data per subject, age and gender annotations, absence of corrupted data, and avoiding excessively unbalanced subject distributions with respect to the considered demographic attributes. Several neural architectures were proposed by the participants, leading to global Equal Error Rates (EERs) as low as 3.33% and 3.61% achieved by the best team respectively in the desktop and mobile scenario, outperforming the current state of the art biometric verification performance for KD. Hosted on CodaLab, the KVC will be made ongoing to represent a useful tool for the research community to compare different approaches under the same experimental conditions and to deepen the knowledge of the field.
Abstract:The recent renaissance in generative models, driven primarily by the advent of diffusion models and iterative improvement in GAN methods, has enabled many creative applications. However, each advancement is also accompanied by a rise in the potential for misuse. In the arena of deepfake generation this is a key societal issue. In particular, the ability to modify segments of videos using such generative techniques creates a new paradigm of deepfakes which are mostly real videos altered slightly to distort the truth. Current deepfake detection methods in the academic literature are not evaluated on this paradigm. In this paper, we present a deepfake detection method able to address this issue by performing both frame and video level deepfake prediction. To facilitate testing our method we create a new benchmark dataset where videos have both real and fake frame sequences. Our method utilizes the Vision Transformer, Scaling and Shifting pretraining and Timeseries Transformer to temporally segment videos to help facilitate the interpretation of possible deepfakes. Extensive experiments on a variety of deepfake generation methods show excellent results on temporal segmentation and classical video level predictions as well. In particular, the paradigm we introduce will form a powerful tool for the moderation of deepfakes, where human oversight can be better targeted to the parts of videos suspected of being deepfakes. All experiments can be reproduced at: https://github.com/sanjaysaha1311/temporal-deepfake-segmentation.
Abstract:This paper describes the experimental framework and results of the IJCB 2022 Mobile Behavioral Biometrics Competition (MobileB2C). The aim of MobileB2C is benchmarking mobile user authentication systems based on behavioral biometric traits transparently acquired by mobile devices during ordinary Human-Computer Interaction (HCI), using a novel public database, BehavePassDB, and a standard experimental protocol. The competition is divided into four tasks corresponding to typical user activities: keystroke, text reading, gallery swiping, and tapping. The data are composed of touchscreen data and several background sensor data simultaneously acquired. "Random" (different users with different devices) and "skilled" (different user on the same device attempting to imitate the legitimate one) impostor scenarios are considered. The results achieved by the participants show the feasibility of user authentication through behavioral biometrics, although this proves to be a non-trivial challenge. MobileB2C will be established as an on-going competition.
Abstract:Malware detection plays a crucial role in cyber-security with the increase in malware growth and advancements in cyber-attacks. Previously unseen malware which is not determined by security vendors are often used in these attacks and it is becoming inevitable to find a solution that can self-learn from unlabeled sample data. This paper presents SHERLOCK, a self-supervision based deep learning model to detect malware based on the Vision Transformer (ViT) architecture. SHERLOCK is a novel malware detection method which learns unique features to differentiate malware from benign programs with the use of image-based binary representation. Experimental results using 1.2 million Android applications across a hierarchy of 47 types and 696 families, shows that self-supervised learning can achieve an accuracy of 97% for the binary classification of malware which is higher than existing state-of-the-art techniques. Our proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification of types and family with macro-F1 score of .497 and .491 respectively.
Abstract:Automatically converting text descriptions into images using transformer architectures has recently received considerable attention. Such advances have implications for many applied design disciplines across fashion, art, architecture, urban planning, landscape design and the future tools available to such disciplines. However, a detailed analysis capturing the capabilities of such models, specifically with a focus on the built environment, has not been performed to date. In this work, we investigate the capabilities and biases of such text-to-image methods as it applies to the built environment in detail. We use a systematic grammar to generate queries related to the built environment and evaluate resulting generated images. We generate 1020 different images and find that text to image transformers are robust at generating realistic images across different domains for this use-case. Generated imagery can be found at the github: https://github.com/sachith500/DALLEURBAN
Abstract:Contactless and efficient systems are implemented rapidly to advocate preventive methods in the fight against the COVID-19 pandemic. Despite the positive benefits of such systems, there is potential for exploitation by invading user privacy. In this work, we analyse the privacy invasiveness of face biometric systems by predicting privacy-sensitive soft-biometrics using masked face images. We train and apply a CNN based on the ResNet-50 architecture with 20,003 synthetic masked images and measure the privacy invasiveness. Despite the popular belief of the privacy benefits of wearing a mask among people, we show that there is no significant difference to privacy invasiveness when a mask is worn. In our experiments we were able to accurately predict sex (94.7%),race (83.1%) and age (MAE 6.21 and RMSE 8.33) from masked face images. Our proposed approach can serve as a baseline utility to evaluate the privacy-invasiveness of artificial intelligence systems that make use of privacy-sensitive information. We open-source all contributions for re-producibility and broader use by the research community.
Abstract:This paper presents a summary of the Masked Face Recognition Competitions (MFR) held within the 2021 International Joint Conference on Biometrics (IJCB 2021). The competition attracted a total of 10 participating teams with valid submissions. The affiliations of these teams are diverse and associated with academia and industry in nine different countries. These teams successfully submitted 18 valid solutions. The competition is designed to motivate solutions aiming at enhancing the face recognition accuracy of masked faces. Moreover, the competition considered the deployability of the proposed solutions by taking the compactness of the face recognition models into account. A private dataset representing a collaborative, multi-session, real masked, capture scenario is used to evaluate the submitted solutions. In comparison to one of the top-performing academic face recognition solutions, 10 out of the 18 submitted solutions did score higher masked face verification accuracy.
Abstract:The COVID-19 pandemic has drastically changed accepted norms globally. Within the past year, masks have been used as a public health response to limit the spread of the virus. This sudden change has rendered many face recognition based access control, authentication and surveillance systems ineffective. Official documents such as passports, driving license and national identity cards are enrolled with fully uncovered face images. However, in the current global situation, face matching systems should be able to match these reference images with masked face images. As an example, in an airport or security checkpoint it is safer to match the unmasked image of the identifying document to the masked person rather than asking them to remove the mask. We find that current facial recognition techniques are not robust to this form of occlusion. To address this unique requirement presented due to the current circumstance, we propose a set of re-purposed datasets and a benchmark for researchers to use. We also propose a contrastive visual representation learning based pre-training workflow which is specialized to masked vs unmasked face matching. We ensure that our method learns robust features to differentiate people across varying data collection scenarios. We achieve this by training over many different datasets and validating our result by testing on various holdout datasets. The specialized weights trained by our method outperform standard face recognition features for masked to unmasked face matching. We believe the provided synthetic mask generating code, our novel training approach and the trained weights from the masked face models will help in adopting existing face recognition systems to operate in the current global environment. We open-source all contributions for broader use by the research community.