Abstract:Large Language Models (LLMs) represent a leap in artificial intelligence, excelling in tasks using human language(s). Although the main focus of general-purpose LLMs is not code generation, they have shown promising results in the domain. However, the usefulness of LLMs in an academic software engineering project has not been fully explored yet. In this study, we explore the usefulness of LLMs for 214 students working in teams consisting of up to six members. Notably, in the academic course through which this study is conducted, students were encouraged to integrate LLMs into their development tool-chain, in contrast to most other academic courses that explicitly prohibit the use of LLMs. In this paper, we analyze the AI-generated code, prompts used for code generation, and the human intervention levels to integrate the code into the code base. We also conduct a perception study to gain insights into the perceived usefulness, influencing factors, and future outlook of LLM from a computer science student's perspective. Our findings suggest that LLMs can play a crucial role in the early stages of software development, especially in generating foundational code structures, and helping with syntax and error debugging. These insights provide us with a framework on how to effectively utilize LLMs as a tool to enhance the productivity of software engineering students, and highlight the necessity of shifting the educational focus toward preparing students for successful human-AI collaboration.
Abstract:Malware detection plays a crucial role in cyber-security with the increase in malware growth and advancements in cyber-attacks. Previously unseen malware which is not determined by security vendors are often used in these attacks and it is becoming inevitable to find a solution that can self-learn from unlabeled sample data. This paper presents SHERLOCK, a self-supervision based deep learning model to detect malware based on the Vision Transformer (ViT) architecture. SHERLOCK is a novel malware detection method which learns unique features to differentiate malware from benign programs with the use of image-based binary representation. Experimental results using 1.2 million Android applications across a hierarchy of 47 types and 696 families, shows that self-supervised learning can achieve an accuracy of 97% for the binary classification of malware which is higher than existing state-of-the-art techniques. Our proposed model is also able to outperform state-of-the-art techniques for multi-class malware classification of types and family with macro-F1 score of .497 and .491 respectively.
Abstract:Contactless and efficient systems are implemented rapidly to advocate preventive methods in the fight against the COVID-19 pandemic. Despite the positive benefits of such systems, there is potential for exploitation by invading user privacy. In this work, we analyse the privacy invasiveness of face biometric systems by predicting privacy-sensitive soft-biometrics using masked face images. We train and apply a CNN based on the ResNet-50 architecture with 20,003 synthetic masked images and measure the privacy invasiveness. Despite the popular belief of the privacy benefits of wearing a mask among people, we show that there is no significant difference to privacy invasiveness when a mask is worn. In our experiments we were able to accurately predict sex (94.7%),race (83.1%) and age (MAE 6.21 and RMSE 8.33) from masked face images. Our proposed approach can serve as a baseline utility to evaluate the privacy-invasiveness of artificial intelligence systems that make use of privacy-sensitive information. We open-source all contributions for re-producibility and broader use by the research community.