Abstract:Sprinting is a determinant ability, especially in team sports. The kinematics of the sprint have been studied in the past using different methods specially developed considering human biomechanics and, among those methods, markerless systems stand out as very cost-effective. On the other hand, we have now multiple general methods for pixel and body tracking based on recent machine learning breakthroughs with excellent performance in body tracking, but these excellent trackers do not generally consider realistic human biomechanics. This investigation first adapts two of these general trackers (MoveNet and CoTracker) for realistic biomechanical analysis and then evaluate them in comparison to manual tracking (with key points manually marked using the software Kinovea). Our best resulting markerless body tracker particularly adapted for sprint biomechanics is termed VideoRun2D. The experimental development and assessment of VideoRun2D is reported on forty sprints recorded with a video camera from 5 different subjects, focusing our analysis in 3 key angles in sprint biomechanics: inclination of the trunk, flex extension of the hip and the knee. The CoTracker method showed huge differences compared to the manual labeling approach. However, the angle curves were correctly estimated by the MoveNet method, finding errors between 3.2{\deg} and 5.5{\deg}. In conclusion, our proposed VideoRun2D based on MoveNet core seems to be a helpful tool for evaluating sprint kinematics in some scenarios. On the other hand, the observed precision of this first version of VideoRun2D as a markerless sprint analysis system may not be yet enough for highly demanding applications. Future research lines towards that purpose are also discussed at the end: better tracking post-processing and user- and time-dependent adaptation.
Abstract:Early detection of chronic and Non-Communicable Diseases (NCDs) is crucial for effective treatment during the initial stages. This study explores the application of wearable devices and Artificial Intelligence (AI) in order to predict weight loss changes in overweight and obese individuals. Using wearable data from a 1-month trial involving around 100 subjects from the AI4FoodDB database, including biomarkers, vital signs, and behavioral data, we identify key differences between those achieving weight loss (>= 2% of their initial weight) and those who do not. Feature selection techniques and classification algorithms reveal promising results, with the Gradient Boosting classifier achieving 84.44% Area Under the Curve (AUC). The integration of multiple data sources (e.g., vital signs, physical and sleep activity, etc.) enhances performance, suggesting the potential of wearable devices and AI in personalized healthcare.
Abstract:We present a novel metric designed, among other applications, to quantify biased behaviors of machine learning models. As its core, the metric consists of a new similarity metric between score distributions that balances both their general shapes and tails' probabilities. In that sense, our proposed metric may be useful in many application areas. Here we focus on and apply it to the operational evaluation of face recognition systems, with special attention to quantifying demographic biases; an application where our metric is especially useful. The topic of demographic bias and fairness in biometric recognition systems has gained major attention in recent years. The usage of these systems has spread in society, raising concerns about the extent to which these systems treat different population groups. A relevant step to prevent and mitigate demographic biases is first to detect and quantify them. Traditionally, two approaches have been studied to quantify differences between population groups in machine learning literature: 1) measuring differences in error rates, and 2) measuring differences in recognition score distributions. Our proposed Comprehensive Equity Index (CEI) trade-offs both approaches combining both errors from distribution tails and general distribution shapes. This new metric is well suited to real-world scenarios, as measured on NIST FRVT evaluations, involving high-performance systems and realistic face databases including a wide range of covariates and demographic groups. We first show the limitations of existing metrics to correctly assess the presence of biases in realistic setups and then propose our new metric to tackle these limitations. We tested the proposed metric with two state-of-the-art models and four widely used databases, showing its capacity to overcome the main flaws of previous bias metrics.
Abstract:This work introduces an innovative method for estimating attention levels (cognitive load) using an ensemble of facial analysis techniques applied to webcam videos. Our method is particularly useful, among others, in e-learning applications, so we trained, evaluated, and compared our approach on the mEBAL2 database, a public multi-modal database acquired in an e-learning environment. mEBAL2 comprises data from 60 users who performed 8 different tasks. These tasks varied in difficulty, leading to changes in their cognitive loads. Our approach adapts state-of-the-art facial analysis technologies to quantify the users' cognitive load in the form of high or low attention. Several behavioral signals and physiological processes related to the cognitive load are used, such as eyeblink, heart rate, facial action units, and head pose, among others. Furthermore, we conduct a study to understand which individual features obtain better results, the most efficient combinations, explore local and global features, and how temporary time intervals affect attention level estimation, among other aspects. We find that global facial features are more appropriate for multimodal systems using score-level fusion, particularly as the temporal window increases. On the other hand, local features are more suitable for fusion through neural network training with score-level fusion approaches. Our method outperforms existing state-of-the-art accuracies using the public mEBAL2 benchmark.
Abstract:In this paper, we present an approach in the Multimodal Learning Analytics field. Within this approach, we have developed a tool to visualize and analyze eye movement data collected during learning sessions in online courses. The tool is named VAAD (an acronym for Visual Attention Analysis Dashboard). These eye movement data have been gathered using an eye-tracker and subsequently processed and visualized for interpretation. The purpose of the tool is to conduct a descriptive analysis of the data by facilitating its visualization, enabling the identification of differences and learning patterns among various learner populations. Additionally, it integrates a predictive module capable of anticipating learner activities during a learning session. Consequently, VAAD holds the potential to offer valuable insights into online learning behaviors from both descriptive and predictive perspectives.
Abstract:Script identification plays a vital role in applications that involve handwriting and document analysis within a multi-script and multi-lingual environment. Moreover, it exhibits a profound connection with human cognition. This paper provides a new database for benchmarking script identification algorithms, which contains both printed and handwritten documents collected from a wide variety of scripts, such as Arabic, Bengali (Bangla), Gujarati, Gurmukhi, Devanagari, Japanese, Kannada, Malayalam, Oriya, Roman, Tamil, Telugu, and Thai. The dataset consists of 1,135 documents scanned from local newspaper and handwritten letters as well as notes from different native writers. Further, these documents are segmented into lines and words, comprising a total of 13,979 and 86,655 lines and words, respectively, in the dataset. Easy-to-go benchmarks are proposed with handcrafted and deep learning methods. The benchmark includes results at the document, line, and word levels with printed and handwritten documents. Results of script identification independent of the document/line/word level and independent of the printed/handwritten letters are also given. The new multi-lingual database is expected to create new script identifiers, present various challenges, including identifying handwritten and printed samples and serve as a foundation for future research in script identification based on the reported results of the three benchmarks.
Abstract:In this article, we explore computer vision approaches to detect abnormal head pose during e-learning sessions and we introduce a study on the effects of mobile phone usage during these sessions. We utilize behavioral data collected from 120 learners monitored while participating in a MOOC learning sessions. Our study focuses on the influence of phone-usage events on behavior and physiological responses, specifically attention, heart rate, and meditation, before, during, and after phone usage. Additionally, we propose an approach for estimating head pose events using images taken by the webcam during the MOOC learning sessions to detect phone-usage events. Our hypothesis suggests that head posture undergoes significant changes when learners interact with a mobile phone, contrasting with the typical behavior seen when learners face a computer during e-learning sessions. We propose an approach designed to detect deviations in head posture from the average observed during a learner's session, operating as a semi-supervised method. This system flags events indicating alterations in head posture for subsequent human review and selection of mobile phone usage occurrences with a sensitivity over 90%.
Abstract:The biomedical field is among the sectors most impacted by the increasing regulation of Artificial Intelligence (AI) and data protection legislation, given the sensitivity of patient information. However, the rise of synthetic data generation methods offers a promising opportunity for data-driven technologies. In this study, we propose a statistical approach for synthetic data generation applicable in classification problems. We assess the utility and privacy implications of synthetic data generated by Kernel Density Estimator and K-Nearest Neighbors sampling (KDE-KNN) within a real-world context, specifically focusing on its application in sepsis detection. The detection of sepsis is a critical challenge in clinical practice due to its rapid progression and potentially life-threatening consequences. Moreover, we emphasize the benefits of KDE-KNN compared to current synthetic data generation methodologies. Additionally, our study examines the effects of incorporating synthetic data into model training procedures. This investigation provides valuable insights into the effectiveness of synthetic data generation techniques in mitigating regulatory constraints within the biomedical field.
Abstract:Synthetic data is gaining increasing relevance for training machine learning models. This is mainly motivated due to several factors such as the lack of real data and intra-class variability, time and errors produced in manual labeling, and in some cases privacy concerns, among others. This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at CVPR 2024. FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations, including data privacy concerns, demographic biases, generalization to novel scenarios, and performance constraints in challenging situations such as aging, pose variations, and occlusions. Unlike the 1st edition, in which synthetic data from DCFace and GANDiffFace methods was only allowed to train face recognition systems, in this 2nd edition we propose new sub-tasks that allow participants to explore novel face generative methods. The outcomes of the 2nd FRCSyn Challenge, along with the proposed experimental protocol and benchmarking contribute significantly to the application of synthetic data to face recognition.
Abstract:This paper introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if specific data was used during the training of Artificial Intelligence (AI) models. Specifically, we propose two novel MINT architectures designed to learn the distinct activation patterns that emerge when an audited model is exposed to data used during its training process. The first architecture is based on a Multilayer Perceptron (MLP) network and the second one is based on Convolutional Neural Networks (CNNs). The proposed MINT architectures are evaluated on a challenging face recognition task, considering three state-of-the-art face recognition models. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Also, different experimental scenarios are considered depending on the context available of the AI model to test. Promising results, up to 90% accuracy, are achieved using our proposed MINT approach, suggesting that it is possible to recognize if an AI model has been trained with specific data.