Abstract:The correct insertion of virtual objects in images of real-world scenes requires a deep understanding of the scene's lighting, geometry and materials, as well as the image formation process. While recent large-scale diffusion models have shown strong generative and inpainting capabilities, we find that current models do not sufficiently "understand" the scene shown in a single picture to generate consistent lighting effects (shadows, bright reflections, etc.) while preserving the identity and details of the composited object. We propose using a personalized large diffusion model as guidance to a physically based inverse rendering process. Our method recovers scene lighting and tone-mapping parameters, allowing the photorealistic composition of arbitrary virtual objects in single frames or videos of indoor or outdoor scenes. Our physically based pipeline further enables automatic materials and tone-mapping refinement.
Abstract:We present a framework, DISORF, to enable online 3D reconstruction and visualization of scenes captured by resource-constrained mobile robots and edge devices. To address the limited compute capabilities of edge devices and potentially limited network availability, we design a framework that efficiently distributes computation between the edge device and remote server. We leverage on-device SLAM systems to generate posed keyframes and transmit them to remote servers that can perform high quality 3D reconstruction and visualization at runtime by leveraging NeRF models. We identify a key challenge with online NeRF training where naive image sampling strategies can lead to significant degradation in rendering quality. We propose a novel shifted exponential frame sampling method that addresses this challenge for online NeRF training. We demonstrate the effectiveness of our framework in enabling high-quality real-time reconstruction and visualization of unknown scenes as they are captured and streamed from cameras in mobile robots and edge devices.
Abstract:Reconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques and improving user experience. However, images from sparse views only contain very limited 3D information, leading to two significant challenges: 1) Difficulty in building multi-view consistency as images for matching are too few; 2) Partially omitted or highly compressed object information as view coverage is insufficient. To tackle these challenges, we propose GaussianObject, a framework to represent and render the 3D object with Gaussian splatting, that achieves high rendering quality with only 4 input images. We first introduce techniques of visual hull and floater elimination which explicitly inject structure priors into the initial optimization process for helping build multi-view consistency, yielding a coarse 3D Gaussian representation. Then we construct a Gaussian repair model based on diffusion models to supplement the omitted object information, where Gaussians are further refined. We design a self-generating strategy to obtain image pairs for training the repair model. Our GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, and OpenIllumination, achieving strong reconstruction results from only 4 views and significantly outperforming previous state-of-the-art methods.
Abstract:Recent advances in neural rendering have shown great potential for reconstructing scenes from multiview images. However, accurately representing objects with glossy surfaces remains a challenge for existing methods. In this work, we introduce ENVIDR, a rendering and modeling framework for high-quality rendering and reconstruction of surfaces with challenging specular reflections. To achieve this, we first propose a novel neural renderer with decomposed rendering components to learn the interaction between surface and environment lighting. This renderer is trained using existing physically based renderers and is decoupled from actual scene representations. We then propose an SDF-based neural surface model that leverages this learned neural renderer to represent general scenes. Our model additionally synthesizes indirect illuminations caused by inter-reflections from shiny surfaces by marching surface-reflected rays. We demonstrate that our method outperforms state-of-art methods on challenging shiny scenes, providing high-quality rendering of specular reflections while also enabling material editing and scene relighting.
Abstract:Machine learning (ML) compilers are an active area of research because they offer the potential to automatically speedup tensor programs. Kernel fusion is often cited as an important optimization performed by ML compilers. However, there exists a knowledge gap about how XLA, the most common ML compiler, applies this nuanced optimization, what kind of speedup it can afford, and what low-level effects it has on hardware. Our paper aims to bridge this knowledge gap by studying key compiler passes of XLA's source code. Our evaluation on a reinforcement learning environment Cartpole shows how different fusion decisions in XLA are made in practice. Furthermore, we implement several XLA kernel fusion strategies that can achieve up to 10.56x speedup compared to our baseline implementation.
Abstract:Implicit neural representations such as neural radiance fields (NeRFs) have recently emerged as a promising approach for 3D reconstruction and novel view synthesis. However, NeRF-based methods encode shape, reflectance, and illumination implicitly in their neural representations, and this makes it challenging for users to manipulate these properties in the rendered images explicitly. Existing approaches only enable limited editing of the scene and deformation of the geometry. Furthermore, no existing work enables accurate scene illumination after object deformation. In this work, we introduce SPIDR, a new hybrid neural SDF representation. SPIDR combines point cloud and neural implicit representations to enable the reconstruction of higher quality meshes and surfaces for object deformation and lighting estimation. To more accurately capture environment illumination for scene relighting, we propose a novel neural implicit model to learn environment light. To enable accurate illumination updates after deformation, we use the shadow mapping technique to efficiently approximate the light visibility updates caused by geometry editing. We demonstrate the effectiveness of SPIDR in enabling high quality geometry editing and deformation with accurate updates to the illumination of the scene. In comparison to prior work, we demonstrate significantly better rendering quality after deformation and lighting estimation.
Abstract:Implicit neural representations with multi-layer perceptrons (MLPs) have recently gained prominence for a wide variety of tasks such as novel view synthesis and 3D object representation and rendering. However, a significant challenge with these representations is that both training and inference with an MLP over a large number of input coordinates to learn and represent an image, video, or 3D object, require large amounts of computation and incur long processing times. In this work, we aim to accelerate inference and training of coordinate-based MLPs for implicit neural representations by proposing a new split MLP architecture, CoordX. With CoordX, the initial layers are split to learn each dimension of the input coordinates separately. The intermediate features are then fused by the last layers to generate the learned signal at the corresponding coordinate point. This significantly reduces the amount of computation required and leads to large speedups in training and inference, while achieving similar accuracy as the baseline MLP. This approach thus aims at first learning functions that are a decomposition of the original signal and then fusing them to generate the learned signal. Our proposed architecture can be generally used for many implicit neural representation tasks with no additional memory overheads. We demonstrate a speedup of up to 2.92x compared to the baseline model for image, video, and 3D shape representation and rendering tasks.
Abstract:Multi-tenant machine learning services have become emerging data-intensive workloads in data centers with heavy usage of GPU resources. Due to the large scale, many tuning parameters and heavy resource usage, it is usually impractical to evaluate and benchmark those machine learning services on real clusters. In this demonstration, we present AnalySIM, a cluster simulator that allows efficient design explorations for multi-tenant machine learning services. Specifically, by trace-driven cluster workload simulation, AnalySIM can easily test and analyze various scheduling policies in a number of performance metrics such as GPU resource utilization. AnalySIM simulates the cluster computational resource based on both physical topology and logical partition. The tool has been used in SenseTime to understand the impact of different scheduling policies with the trace from a real production cluster of over 1000 GPUs. We find that preemption and migration are able to significantly reduce average job completion time and mitigate the resource fragmentation problem.
Abstract:This paper aims to analyze knowledge isomorphism between pre-trained deep neural networks. We propose a generic definition for knowledge isomorphism between neural networks at different fuzziness levels, and design a task-agnostic and model-agnostic method to disentangle and quantify isomorphic features from intermediate layers of a neural network. As a generic tool, our method can be broadly used for different applications. In preliminary experiments, we have used knowledge isomorphism as a tool to diagnose feature representations of neural networks. Knowledge isomorphism provides new insights to explain the success of existing deep-learning techniques, such as knowledge distillation and network compression. More crucially, it has been shown that knowledge isomorphism can also be used to refine pre-trained networks and boost performance.