Abstract:Space has emerged as an exciting new application area for machine learning, with several missions equipping deep learning capabilities on-board spacecraft. Pre-processing satellite data through on-board training is necessary to address the satellite downlink deficit, as not enough transmission opportunities are available to match the high rates of data generation. To scale this effort across entire constellations, collaborated training in orbit has been enabled through federated learning (FL). While current explorations of FL in this context have successfully adapted FL algorithms for scenario-specific constraints, these theoretical FL implementations face several limitations that prevent progress towards real-world deployment. To address this gap, we provide a holistic exploration of the FL in space domain on several fronts. 1) We develop a method for space-ification of existing FL algorithms, evaluated on 2) FLySTacK, our novel satellite constellation design and hardware aware testing platform where we perform rigorous algorithm evaluations. Finally we introduce 3) AutoFLSat, a generalized, hierarchical, autonomous FL algorithm for space that provides a 12.5% to 37.5% reduction in model training time than leading alternatives.
Abstract:The ubiquity of camera-enabled mobile devices has lead to large amounts of unlabelled video data being produced at the edge. Although various self-supervised learning (SSL) methods have been proposed to harvest their latent spatio-temporal representations for task-specific training, practical challenges including privacy concerns and communication costs prevent SSL from being deployed at large scales. To mitigate these issues, we propose the use of Federated Learning (FL) to the task of video SSL. In this work, we evaluate the performance of current state-of-the-art (SOTA) video-SSL techniques and identify their shortcomings when integrated into the large-scale FL setting simulated with kinetics-400 dataset. We follow by proposing a novel federated SSL framework for video, dubbed FedVSSL, that integrates different aggregation strategies and partial weight updating. Extensive experiments demonstrate the effectiveness and significance of FedVSSL as it outperforms the centralized SOTA for the downstream retrieval task by 6.66% on UCF-101 and 5.13% on HMDB-51.
Abstract:Breakthroughs in unsupervised domain adaptation (uDA) can help in adapting models from a label-rich source domain to unlabeled target domains. Despite these advancements, there is a lack of research on how uDA algorithms, particularly those based on adversarial learning, can work in distributed settings. In real-world applications, target domains are often distributed across thousands of devices, and existing adversarial uDA algorithms -- which are centralized in nature -- cannot be applied in these settings. To solve this important problem, we introduce FRuDA: an end-to-end framework for distributed adversarial uDA. Through a careful analysis of the uDA literature, we identify the design goals for a distributed uDA system and propose two novel algorithms to increase adaptation accuracy and training efficiency of adversarial uDA in distributed settings. Our evaluation of FRuDA with five image and speech datasets show that it can boost target domain accuracy by up to 50% and improve the training efficiency of adversarial uDA by at least 11 times.
Abstract:Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform.
Abstract:Meta-learning provides a popular and effective family of methods for data-efficient learning of new tasks. However, several important issues in meta-learning have proven hard to study thus far. For example, performance degrades in real-world settings where meta-learners must learn from a wide and potentially multi-modal distribution of training tasks; and when distribution shift exists between meta-train and meta-test task distributions. These issues are typically hard to study since the shape of task distributions, and shift between them are not straightforward to measure or control in standard benchmarks. We propose the channel coding problem as a benchmark for meta-learning. Channel coding is an important practical application where task distributions naturally arise, and fast adaptation to new tasks is practically valuable. We use this benchmark to study several aspects of meta-learning, including the impact of task distribution breadth and shift, which can be controlled in the coding problem. Going forward, this benchmark provides a tool for the community to study the capabilities and limitations of meta-learning, and to drive research on practically robust and effective meta-learners.
Abstract:Recent work on predicting patient outcomes in the Intensive Care Unit (ICU) has focused heavily on the physiological time series data, largely ignoring sparse data such as diagnoses and medications. When they are included, they are usually concatenated in the late stages of a model, which may struggle to learn from rarer disease patterns. Instead, we propose a strategy to exploit diagnoses as relational information by connecting similar patients in a graph. To this end, we propose LSTM-GNN for patient outcome prediction tasks: a hybrid model combining Long Short-Term Memory networks (LSTMs) for extracting temporal features and Graph Neural Networks (GNNs) for extracting the patient neighbourhood information. We demonstrate that LSTM-GNNs outperform the LSTM-only baseline on length of stay prediction tasks on the eICU database. More generally, our results indicate that exploiting information from neighbouring patient cases using graph neural networks is a promising research direction, yielding tangible returns in supervised learning performance on Electronic Health Records.
Abstract:We introduce a method to speed up training by 2x and inference by 3x in deep neural networks using structured pruning applied before training. Unlike previous works on pruning before training which prune individual weights, our work develops a methodology to remove entire channels and hidden units with the explicit aim of speeding up training and inference. We introduce a compute-aware scoring mechanism which enables pruning in units of sensitivity per FLOP removed, allowing even greater speed ups. Our method is fast, easy to implement, and needs just one forward/backward pass on a single batch of data to complete pruning before training begins.
Abstract:Despite the significant progress in automatic speech recognition (ASR), distant ASR remains challenging due to noise and reverberation. A common approach to mitigate this issue consists of equipping the recording devices with multiple microphones that capture the acoustic scene from different perspectives. These multi-channel audio recordings contain specific internal relations between each signal. In this paper, we propose to capture these inter- and intra- structural dependencies with quaternion neural networks, which can jointly process multiple signals as whole quaternion entities. The quaternion algebra replaces the standard dot product with the Hamilton one, thus offering a simple and elegant way to model dependencies between elements. The quaternion layers are then coupled with a recurrent neural network, which can learn long-term dependencies in the time domain. We show that a quaternion long-short term memory neural network (QLSTM), trained on the concatenated multi-channel speech signals, outperforms equivalent real-valued LSTM on two different tasks of multi-channel distant speech recognition.
Abstract:Knowledge distillation has been widely used to compress existing deep learning models while preserving the performance on a wide range of applications. In the specific context of Automatic Speech Recognition (ASR), distillation from ensembles of acoustic models has recently shown promising results in increasing recognition performance. In this paper, we propose an extension of multi-teacher distillation methods to joint ctc-atention end-to-end ASR systems. We also introduce two novel distillation strategies. The core intuition behind both is to integrate the error rate metric to the teacher selection rather than solely focusing on the observed losses. This way, we directly distillate and optimize the student toward the relevant metric for speech recognition. We evaluated these strategies under a selection of training procedures on the TIMIT phoneme recognition task and observed promising error rate for these strategies compared to a common baseline. Indeed, the best obtained phoneme error rate of 16.4% represents a state-of-the-art score for end-to-end ASR systems.
Abstract:The EmoPain 2020 Challenge is the first international competition aimed at creating a uniform platform for the comparison of machine learning and multimedia processing methods of automatic chronic pain assessment from human expressive behaviour, and also the identification of pain-related behaviours. The objective of the challenge is to promote research in the development of assistive technologies that help improve the quality of life for people with chronic pain via real-time monitoring and feedback to help manage their condition and remain physically active. The challenge also aims to encourage the use of the relatively underutilised, albeit vital bodily expression signals for automatic pain and pain-related emotion recognition. This paper presents a description of the challenge, competition guidelines, bench-marking dataset, and the baseline systems' architecture and performance on the three sub-tasks: pain estimation from facial expressions, pain recognition from multimodal movement, and protective movement behaviour detection.