Abstract:In this work, we present compelling evidence that controlling model capacity during fine-tuning can effectively mitigate memorization in diffusion models. Specifically, we demonstrate that adopting Parameter-Efficient Fine-Tuning (PEFT) within the pre-train fine-tune paradigm significantly reduces memorization compared to traditional full fine-tuning approaches. Our experiments utilize the MIMIC dataset, which comprises image-text pairs of chest X-rays and their corresponding reports. The results, evaluated through a range of memorization and generation quality metrics, indicate that PEFT not only diminishes memorization but also enhances downstream generation quality. Additionally, PEFT methods can be seamlessly combined with existing memorization mitigation techniques for further improvement. The code for our experiments is available at: https://github.com/Raman1121/Diffusion_Memorization_HPO
Abstract:Diffusion models show a remarkable ability in generating images that closely mirror the training distribution. However, these models are prone to training data memorization, leading to significant privacy, ethical, and legal concerns, particularly in sensitive fields such as medical imaging. We hypothesize that memorization is driven by the overparameterization of deep models, suggesting that regularizing model capacity during fine-tuning could be an effective mitigation strategy. Parameter-efficient fine-tuning (PEFT) methods offer a promising approach to capacity control by selectively updating specific parameters. However, finding the optimal subset of learnable parameters that balances generation quality and memorization remains elusive. To address this challenge, we propose a bi-level optimization framework that guides automated parameter selection by utilizing memorization and generation quality metrics as rewards. Our framework successfully identifies the optimal parameter set to be updated to satisfy the generation-memorization tradeoff. We perform our experiments for the specific task of medical image generation and outperform existing state-of-the-art training-time mitigation strategies by fine-tuning as few as 0.019% of model parameters. Furthermore, we show that the strategies learned through our framework are transferable across different datasets and domains. Our proposed framework is scalable to large datasets and agnostic to the choice of reward functions. Finally, we show that our framework can be combined with existing approaches for further memorization mitigation.
Abstract:Large language models (LLMs) famously exhibit emergent in-context learning (ICL) -- the ability to rapidly adapt to new tasks using few-shot examples provided as a prompt, without updating the model's weights. Built on top of LLMs, vision large language models (VLLMs) have advanced significantly in areas such as recognition, reasoning, and grounding. However, investigations into \emph{multimodal ICL} have predominantly focused on few-shot visual question answering (VQA), and image captioning, which we will show neither exploit the strengths of ICL, nor test its limitations. The broader capabilities and limitations of multimodal ICL remain under-explored. In this study, we introduce a comprehensive benchmark VL-ICL Bench for multimodal in-context learning, encompassing a broad spectrum of tasks that involve both images and text as inputs and outputs, and different types of challenges, from {perception to reasoning and long context length}. We evaluate the abilities of state-of-the-art VLLMs against this benchmark suite, revealing their diverse strengths and weaknesses, and showing that even the most advanced models, such as GPT-4, find the tasks challenging. By highlighting a range of new ICL tasks, and the associated strengths and limitations of existing models, we hope that our dataset will inspire future work on enhancing the in-context learning capabilities of VLLMs, as well as inspire new applications that leverage VLLM ICL. The code and dataset are available at https://github.com/ys-zong/VL-ICL.
Abstract:Current vision large language models (VLLMs) exhibit remarkable capabilities yet are prone to generate harmful content and are vulnerable to even the simplest jailbreaking attacks. Our initial analysis finds that this is due to the presence of harmful data during vision-language instruction fine-tuning, and that VLLM fine-tuning can cause forgetting of safety alignment previously learned by the underpinning LLM. To address this issue, we first curate a vision-language safe instruction-following dataset VLGuard covering various harmful categories. Our experiments demonstrate that integrating this dataset into standard vision-language fine-tuning or utilizing it for post-hoc fine-tuning effectively safety aligns VLLMs. This alignment is achieved with minimal impact on, or even enhancement of, the models' helpfulness. The versatility of our safety fine-tuning dataset makes it a valuable resource for safety-testing existing VLLMs, training new models or safeguarding pre-trained VLLMs. Empirical results demonstrate that fine-tuned VLLMs effectively reject unsafe instructions and substantially reduce the success rates of several black-box adversarial attacks, which approach zero in many cases. The code and dataset are available at https://github.com/ys-zong/VLGuard.
Abstract:Training models with robust group fairness properties is crucial in ethically sensitive application areas such as medical diagnosis. Despite the growing body of work aiming to minimise demographic bias in AI, this problem remains challenging. A key reason for this challenge is the fairness generalisation gap: High-capacity deep learning models can fit all training data nearly perfectly, and thus also exhibit perfect fairness during training. In this case, bias emerges only during testing when generalisation performance differs across subgroups. This motivates us to take a bi-level optimisation perspective on fair learning: Optimising the learning strategy based on validation fairness. Specifically, we consider the highly effective workflow of adapting pre-trained models to downstream medical imaging tasks using parameter-efficient fine-tuning (PEFT) techniques. There is a trade-off between updating more parameters, enabling a better fit to the task of interest vs. fewer parameters, potentially reducing the generalisation gap. To manage this tradeoff, we propose FairTune, a framework to optimise the choice of PEFT parameters with respect to fairness. We demonstrate empirically that FairTune leads to improved fairness on a range of medical imaging datasets.
Abstract:Source-free domain adaptation has become popular because of its practical usefulness and no need to access source data. However, the adaptation process still takes a considerable amount of time and is predominantly based on optimization that relies on back-propagation. In this work we present a simple feed-forward approach that challenges the need for back-propagation based adaptation. Our approach is based on computing prototypes of classes under the domain shift using a pre-trained model. It achieves strong improvements in accuracy compared to the pre-trained model and requires only a small fraction of time of existing domain adaptation methods.
Abstract:Performance of a pre-trained semantic segmentation model is likely to substantially decrease on data from a new domain. We show a pre-trained model can be adapted to unlabelled target domain data by calculating soft-label prototypes under the domain shift and making predictions according to the prototype closest to the vector with predicted class probabilities. The proposed adaptation procedure is fast, comes almost for free in terms of computational resources and leads to considerable performance improvements. We demonstrate the benefits of such label calibration on the highly-practical synthetic-to-real semantic segmentation problem.
Abstract:Noise injection and data augmentation strategies have been effective for enhancing the generalisation and robustness of neural networks (NNs). Certain types of noise such as label smoothing and MixUp have also been shown to improve calibration. Since noise can be added in various stages of the NN's training, it motivates the question of when and where the noise is the most effective. We study a variety of noise types to determine how much they improve calibration and generalisation, and under what conditions. More specifically we evaluate various noise-injection strategies in both in-distribution (ID) and out-of-distribution (OOD) scenarios. The findings highlight that activation noise was the most transferable and effective in improving generalisation, while input augmentation noise was prominent in improving calibration on OOD but not necessarily ID data.
Abstract:Meta-learning and other approaches to few-shot learning are widely studied for image recognition, and are increasingly applied to other vision tasks such as pose estimation and dense prediction. This naturally raises the question of whether there is any few-shot meta-learning algorithm capable of generalizing across these diverse task types? To support the community in answering this question, we introduce Meta Omnium, a dataset-of-datasets spanning multiple vision tasks including recognition, keypoint localization, semantic segmentation and regression. We experiment with popular few-shot meta-learning baselines and analyze their ability to generalize across tasks and to transfer knowledge between them. Meta Omnium enables meta-learning researchers to evaluate model generalization to a much wider array of tasks than previously possible, and provides a single framework for evaluating meta-learners across a wide suite of vision applications in a consistent manner.
Abstract:Successful deployment of artificial intelligence (AI) in various settings has led to numerous positive outcomes for individuals and society. However, AI systems have also been shown to harm parts of the population due to biased predictions. We take a closer look at AI fairness and analyse how lack of AI fairness can lead to deepening of biases over time and act as a social stressor. If the issues persist, it could have undesirable long-term implications on society, reinforced by interactions with other risks. We examine current strategies for improving AI fairness, assess their limitations in terms of real-world deployment, and explore potential paths forward to ensure we reap AI's benefits without harming significant parts of the society.