Abstract:Current weakly-supervised incremental learning for semantic segmentation (WILSS) approaches only consider replacing pixel-level annotations with image-level labels, while the training images are still from well-designed datasets. In this work, we argue that widely available web images can also be considered for the learning of new classes. To achieve this, firstly we introduce a strategy to select web images which are similar to previously seen examples in the latent space using a Fourier-based domain discriminator. Then, an effective caption-driven reharsal strategy is proposed to preserve previously learnt classes. To our knowledge, this is the first work to rely solely on web images for both the learning of new concepts and the preservation of the already learned ones in WILSS. Experimental results show that the proposed approach can reach state-of-the-art performances without using manually selected and annotated data in the incremental steps.
Abstract:Recent years have seen object detection robotic systems deployed in several personal devices (e.g., home robots and appliances). This has highlighted a challenge in their design, i.e., they cannot efficiently update their knowledge to distinguish between general classes and user-specific instances (e.g., a dog vs. user's dog). We refer to this challenging task as Instance-level Personalized Object Detection (IPOD). The personalization task requires many samples for model tuning and optimization in a centralized server, raising privacy concerns. An alternative is provided by approaches based on recent large-scale Foundation Models, but their compute costs preclude on-device applications. In our work we tackle both problems at the same time, designing a Few-Shot IPOD strategy called AuXFT. We introduce a conditional coarse-to-fine few-shot learner to refine the coarse predictions made by an efficient object detector, showing that using an off-the-shelf model leads to poor personalization due to neural collapse. Therefore, we introduce a Translator block that generates an auxiliary feature space where features generated by a self-supervised model (e.g., DINOv2) are distilled without impacting the performance of the detector. We validate AuXFT on three publicly available datasets and one in-house benchmark designed for the IPOD task, achieving remarkable gains in all considered scenarios with excellent time-complexity trade-off: AuXFT reaches a performance of 80% its upper bound at just 32% of the inference time, 13% of VRAM and 19% of the model size.
Abstract:The acquisition of objects outside the Line-of-Sight of cameras is a very intriguing but also extremely challenging research topic. Recent works showed the feasibility of this idea exploiting transient imaging data produced by custom direct Time of Flight sensors. In this paper, for the first time, we tackle this problem using only data from an off-the-shelf indirect Time of Flight sensor without any further hardware requirement. We introduced a Deep Learning model able to re-frame the surfaces where light bounces happen as a virtual mirror. This modeling makes the task easier to handle and also facilitates the construction of annotated training data. From the obtained data it is possible to retrieve the depth information of the hidden scene. We also provide a first-in-its-kind synthetic dataset for the task and demonstrate the feasibility of the proposed idea over it.
Abstract:In Federated Learning (FL), multiple clients collaboratively train a global model without sharing private data. In semantic segmentation, the Federated source Free Domain Adaptation (FFreeDA) setting is of particular interest, where clients undergo unsupervised training after supervised pretraining at the server side. While few recent works address FL for autonomous vehicles, intrinsic real-world challenges such as the presence of adverse weather conditions and the existence of different autonomous agents are still unexplored. To bridge this gap, we address both problems and introduce a new federated semantic segmentation setting where both car and drone clients co-exist and collaborate. Specifically, we propose a novel approach for this setting which exploits a batch-norm weather-aware strategy to dynamically adapt the model to the different weather conditions, while hyperbolic space prototypes are used to align the heterogeneous client representations. Finally, we introduce FLYAWARE, the first semantic segmentation dataset with adverse weather data for aerial vehicles.
Abstract:In multimedia understanding tasks, corrupted samples pose a critical challenge, because when fed to machine learning models they lead to performance degradation. In the past, three groups of approaches have been proposed to handle noisy data: i) enhancer and denoiser modules to improve the quality of the noisy data, ii) data augmentation approaches, and iii) domain adaptation strategies. All the aforementioned approaches come with drawbacks that limit their applicability; the first has high computational costs and requires pairs of clean-corrupted data for training, while the others only allow deployment of the same task/network they were trained on (\ie, when upstream and downstream task/network are the same). In this paper, we propose SyMPIE to solve these shortcomings. To this end, we design a small, modular, and efficient (just 2GFLOPs to process a Full HD image) system to enhance input data for robust downstream multimedia understanding with minimal computational cost. Our SyMPIE is pre-trained on an upstream task/network that should not match the downstream ones and does not need paired clean-corrupted samples. Our key insight is that most input corruptions found in real-world tasks can be modeled through global operations on color channels of images or spatial filters with small kernels. We validate our approach on multiple datasets and tasks, such as image classification (on ImageNetC, ImageNetC-Bar, VizWiz, and a newly proposed mixed corruption benchmark named ImageNetC-mixed) and semantic segmentation (on Cityscapes, ACDC, and DarkZurich) with consistent improvements of about 5\% relative accuracy gain across the board. The code of our approach and the new ImageNetC-mixed benchmark will be made available upon publication.
Abstract:We seek to enable classic processing of continuous ultra-sparse spatiotemporal data generated by event-based sensors with dense machine learning models. We propose a novel hybrid pipeline composed of asynchronous sensing and synchronous processing that combines several ideas: (1) an embedding based on PointNet models -- the ALERT module -- that can continuously integrate new and dismiss old events thanks to a leakage mechanism, (2) a flexible readout of the embedded data that allows to feed any downstream model with always up-to-date features at any sampling rate, (3) exploiting the input sparsity in a patch-based approach inspired by Vision Transformer to optimize the efficiency of the method. These embeddings are then processed by a transformer model trained for object and gesture recognition. Using this approach, we achieve performances at the state-of-the-art with a lower latency than competitors. We also demonstrate that our asynchronous model can operate at any desired sampling rate.
Abstract:Catastrophic forgetting of previous knowledge is a critical issue in continual learning typically handled through various regularization strategies. However, existing methods struggle especially when several incremental steps are performed. In this paper, we extend our previous approach (RECALL) and tackle forgetting by exploiting unsupervised web-crawled data to retrieve examples of old classes from online databases. Differently from the original approach that did not perform any evaluation of the web data, here we introduce two novel approaches based on adversarial learning and adaptive thresholding to select from web data only samples strongly resembling the statistics of the no longer available training ones. Furthermore, we improved the pseudo-labeling scheme to achieve a more accurate labeling of web data that also consider classes being learned in the current step. Experimental results show that this enhanced approach achieves remarkable results, especially when multiple incremental learning steps are performed.
Abstract:Neural implicit modeling permits to achieve impressive 3D reconstruction results on small objects, while it exhibits significant limitations in large indoor scenes. In this work, we propose a novel neural implicit modeling method that leverages multiple regularization strategies to achieve better reconstructions of large indoor environments, while relying only on images. A sparse but accurate depth prior is used to anchor the scene to the initial model. A dense but less accurate depth prior is also introduced, flexible enough to still let the model diverge from it to improve the estimated geometry. Then, a novel self-supervised strategy to regularize the estimated surface normals is presented. Finally, a learnable exposure compensation scheme permits to cope with challenging lighting conditions. Experimental results show that our approach produces state-of-the-art 3D reconstructions in challenging indoor scenarios.
Abstract:The development of computer vision algorithms for Unmanned Aerial Vehicles (UAVs) imagery heavily relies on the availability of annotated high-resolution aerial data. However, the scarcity of large-scale real datasets with pixel-level annotations poses a significant challenge to researchers as the limited number of images in existing datasets hinders the effectiveness of deep learning models that require a large amount of training data. In this paper, we propose a multimodal synthetic dataset containing both images and 3D data taken at multiple flying heights to address these limitations. In addition to object-level annotations, the provided data also include pixel-level labeling in 28 classes, enabling exploration of the potential advantages in tasks like semantic segmentation. In total, our dataset contains 72k labeled samples that allow for effective training of deep architectures showing promising results in synthetic-to-real adaptation. The dataset will be made publicly available to support the development of novel computer vision methods targeting UAV applications.
Abstract:State-of-the-art multimodal semantic segmentation approaches combining LiDAR and color data are usually designed on top of asymmetric information-sharing schemes and assume that both modalities are always available. Regrettably, this strong assumption may not hold in real-world scenarios, where sensors are prone to failure or can face adverse conditions (night-time, rain, fog, etc.) that make the acquired information unreliable. Moreover, these architectures tend to fail in continual learning scenarios. In this work, we re-frame the task of multimodal semantic segmentation by enforcing a tightly-coupled feature representation and a symmetric information-sharing scheme, which allows our approach to work even when one of the input modalities is missing. This makes our model reliable even in safety-critical settings, as is the case of autonomous driving. We evaluate our approach on the SemanticKITTI dataset, comparing it with our closest competitor. We also introduce an ad-hoc continual learning scheme and show results in a class-incremental continual learning scenario that prove the effectiveness of the approach also in this setting.