Abstract:Open-vocabulary semantic segmentation enables models to identify novel object categories beyond their training data. While this flexibility represents a significant advancement, current approaches still rely on manually specified class names as input, creating an inherent bottleneck in real-world applications. This work proposes a Vocabulary-Free Semantic Segmentation pipeline, eliminating the need for predefined class vocabularies. Specifically, we address the chicken-and-egg problem where users need knowledge of all potential objects within a scene to identify them, yet the purpose of segmentation is often to discover these objects. The proposed approach leverages Vision-Language Models to automatically recognize objects and generate appropriate class names, aiming to solve the challenge of class specification and naming quality. Through extensive experiments on several public datasets, we highlight the crucial role of the text encoder in model performance, particularly when the image text classes are paired with generated descriptions. Despite the challenges introduced by the sensitivity of the segmentation text encoder to false negatives within the class tagging process, which adds complexity to the task, we demonstrate that our fully automated pipeline significantly enhances vocabulary-free segmentation accuracy across diverse real-world scenarios.
Abstract:Neural Fields (NFs) have gained momentum as a tool for compressing various data modalities - e.g. images and videos. This work leverages previous advances and proposes a novel NF-based compression algorithm for 3D data. We derive two versions of our approach - one tailored to watertight shapes based on Signed Distance Fields (SDFs) and, more generally, one for arbitrary non-watertight shapes using Unsigned Distance Fields (UDFs). We demonstrate that our method excels at geometry compression on 3D point clouds as well as meshes. Moreover, we show that, due to the NF formulation, it is straightforward to extend our compression algorithm to compress both geometry and attribute (e.g. color) of 3D data.