Abstract:Medical AI has tremendous potential to advance healthcare by supporting the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving provider and patient experience. We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data. To meet this need, we are building MedPerf, an open framework for benchmarking machine learning in the medical domain. MedPerf will enable federated evaluation in which models are securely distributed to different facilities for evaluation, thereby empowering healthcare organizations to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status, and our roadmap. We call for researchers and organizations to join us in creating the MedPerf open benchmarking platform.
Abstract:In this paper, we introduce Katib: a scalable, cloud-native, and production-ready hyperparameter tuning system that is agnostic of the underlying machine learning framework. Though there are multiple hyperparameter tuning systems available, this is the first one that caters to the needs of both users and administrators of the system. We present the motivation and design of the system and contrast it with existing hyperparameter tuning systems, especially in terms of multi-tenancy, scalability, fault-tolerance, and extensibility. It can be deployed on local machines, or hosted as a service in on-premise data centers, or in private/public clouds. We demonstrate the advantage of our system using experimental results as well as real-world, production use cases. Katib has active contributors from multiple companies and is open-sourced at \emph{https://github.com/kubeflow/katib} under the Apache 2.0 license.