Technical University of Kaiserslautern
Abstract:Physics-Informed Neural Networks (PINNs) have emerged as a promising method for approximating solutions to partial differential equations (PDEs) using deep learning. However, PINNs, based on multilayer perceptrons (MLP), often employ point-wise predictions, overlooking the implicit dependencies within the physical system such as temporal or spatial dependencies. These dependencies can be captured using more complex network architectures, for example CNNs or Transformers. However, these architectures conventionally do not allow for incorporating physical constraints, as advancements in integrating such constraints within these frameworks are still lacking. Relying on point-wise predictions often results in trivial solutions. To address this limitation, we propose SetPINNs, a novel approach inspired by Finite Elements Methods from the field of Numerical Analysis. SetPINNs allow for incorporating the dependencies inherent in the physical system while at the same time allowing for incorporating the physical constraints. They accurately approximate PDE solutions of a region, thereby modeling the inherent dependencies between multiple neighboring points in that region. Our experiments show that SetPINNs demonstrate superior generalization performance and accuracy across diverse physical systems, showing that they mitigate failure modes and converge faster in comparison to existing approaches. Furthermore, we demonstrate the utility of SetPINNs on two real-world physical systems.
Abstract:Neural Networks are notoriously difficult to inspect. We introduce comgra, an open source python library for use with PyTorch. Comgra extracts data about the internal activations of a model and organizes it in a GUI (graphical user interface). It can show both summary statistics and individual data points, compare early and late stages of training, focus on individual samples of interest, and visualize the flow of the gradient through the network. This makes it possible to inspect the model's behavior from many different angles and save time by rapidly testing different hypotheses without having to rerun it. Comgra has applications for debugging, neural architecture design, and mechanistic interpretability. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/FlorianDietz/comgra.
Abstract:Large language models (LLMs) have shown their potential in long-context understanding and mathematical reasoning. In this paper, we study the problem of using LLMs to detect tabular anomalies and show that pre-trained LLMs are zero-shot batch-level anomaly detectors. That is, without extra distribution-specific model fitting, they can discover hidden outliers in a batch of data, demonstrating their ability to identify low-density data regions. For LLMs that are not well aligned with anomaly detection and frequently output factual errors, we apply simple yet effective data-generating processes to simulate synthetic batch-level anomaly detection datasets and propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies. Experiments on a large anomaly detection benchmark (ODDS) showcase i) GPT-4 has on-par performance with the state-of-the-art transductive learning-based anomaly detection methods and ii) the efficacy of our synthetic dataset and fine-tuning strategy in aligning LLMs to this task.
Abstract:While previous studies have demonstrated the potential of AI to diagnose diseases in imaging data, clinical implementation is still lagging behind. This is partly because AI models require training with large numbers of examples only available for common diseases. In clinical reality, however, only few diseases are common, whereas the majority of diseases are less frequent (long-tail distribution). Current AI models overlook or misclassify these diseases. We propose a deep anomaly detection approach that only requires training data from common diseases to detect also all less frequent diseases. We collected two large real-world datasets of gastrointestinal biopsies, which are prototypical of the problem. Herein, the ten most common findings account for approximately 90% of cases, whereas the remaining 10% contained 56 disease entities, including many cancers. 17 million histological images from 5,423 cases were used for training and evaluation. Without any specific training for the diseases, our best-performing model reliably detected a broad spectrum of infrequent ("anomalous") pathologies with 95.0% (stomach) and 91.0% (colon) AUROC and generalized across scanners and hospitals. By design, the proposed anomaly detection can be expected to detect any pathological alteration in the diagnostic tail of gastrointestinal biopsies, including rare primary or metastatic cancers. This study establishes the first effective clinical application of AI-based anomaly detection in histopathology that can flag anomalous cases, facilitate case prioritization, reduce missed diagnoses and enhance the general safety of AI models, thereby driving AI adoption and automation in routine diagnostics and beyond.
Abstract:Conventional machine learning methods are predominantly designed to predict outcomes based on a single data type. However, practical applications may encompass data of diverse types, such as text, images, and audio. We introduce interpretable tensor fusion (InTense), a multimodal learning method for training neural networks to simultaneously learn multimodal data representations and their interpretable fusion. InTense can separately capture both linear combinations and multiplicative interactions of diverse data types, thereby disentangling higher-order interactions from the individual effects of each modality. InTense provides interpretability out of the box by assigning relevance scores to modalities and their associations. The approach is theoretically grounded and yields meaningful relevance scores on multiple synthetic and real-world datasets. Experiments on six real-world datasets show that InTense outperforms existing state-of-the-art multimodal interpretable approaches in terms of accuracy and interpretability.
Abstract:The field of deep generative modeling has grown rapidly and consistently over the years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains. In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with valuable insights for exploring fruitful research directions, thereby fostering the development of more robust and accessible generative AI solutions.
Abstract:Deep learning-based methods have achieved a breakthrough in image anomaly detection, but their complexity introduces a considerable challenge to understanding why an instance is predicted to be anomalous. We introduce a novel explanation method that generates multiple counterfactual examples for each anomaly, capturing diverse concepts of anomalousness. A counterfactual example is a modification of the anomaly that is perceived as normal by the anomaly detector. The method provides a high-level semantic explanation of the mechanism that triggered the anomaly detector, allowing users to explore "what-if scenarios." Qualitative and quantitative analyses across various image datasets show that the method applied to state-of-the-art anomaly detectors can achieve high-quality semantic explanations of detectors.
Abstract:Deep Neural Networks (DNNs) demonstrated remarkable capabilities in learning complex hierarchical data representations, but the nature of these representations remains largely unknown. Existing global explainability methods, such as Network Dissection, face limitations such as reliance on segmentation masks, lack of statistical significance testing, and high computational demands. We propose Inverse Recognition (INVERT), a scalable approach for connecting learned representations with human-understandable concepts by leveraging their capacity to discriminate between these concepts. In contrast to prior work, INVERT is capable of handling diverse types of neurons, exhibits less computational complexity, and does not rely on the availability of segmentation masks. Moreover, INVERT provides an interpretable metric assessing the alignment between the representation and its corresponding explanation and delivering a measure of statistical significance, emphasizing its utility and credibility. We demonstrate the applicability of INVERT in various scenarios, including the identification of representations affected by spurious correlations, and the interpretation of the hierarchical structure of decision-making within the models.
Abstract:There is a lack of quantitative measures to evaluate the progression of topics through time in dynamic topic models (DTMs). Filling this gap, we propose a novel evaluation measure for DTMs that analyzes the changes in the quality of each topic over time. Additionally, we propose an extension combining topic quality with the model's temporal consistency. We demonstrate the utility of the proposed measure by applying it to synthetic data and data from existing DTMs. We also conducted a human evaluation, which indicates that the proposed measure correlates well with human judgment. Our findings may help in identifying changing topics, evaluating different DTMs, and guiding future research in this area.
Abstract:Text Style Transfer (TST) is challenging to evaluate because the quality of the generated text manifests itself in multiple aspects, each of which is hard to measure individually: style transfer accuracy, content preservation, and overall fluency of the text. Human evaluation is the gold standard in TST evaluation; however, it is expensive, and the results are difficult to reproduce. Numerous automated metrics are employed to assess performance in these aspects, serving as substitutes for human evaluation. However, the correlation between many of these automated metrics and human evaluations remains unclear, raising doubts about their effectiveness as reliable benchmarks. Recent advancements in Large Language Models (LLMs) have demonstrated their ability to not only match but also surpass the average human performance across a wide range of unseen tasks. This suggests that LLMs have the potential to serve as a viable alternative to human evaluation and other automated metrics. We assess the performance of different LLMs on TST evaluation by employing multiple input prompts and comparing their results. Our findings indicate that (even zero-shot) prompting correlates strongly with human evaluation and often surpasses the performance of (other) automated metrics. Additionally, we propose the ensembling of prompts and show it increases the robustness of TST evaluation.This work contributes to the ongoing efforts in evaluating LLMs on diverse tasks, which includes a discussion of failure cases and limitations.