Abstract:Diffusion model, as a powerful generative model, has found a wide range of applications including MRI reconstruction. However, most existing diffusion model-based MRI reconstruction methods operate directly in pixel space, which makes their optimization and inference computationally expensive. Latent diffusion models were introduced to address this problem in natural image processing, but directly applying them to MRI reconstruction still faces many challenges, including the lack of control over the generated results, the adaptability of Variational AutoEncoder (VAE) to MRI, and the exploration of applicable data consistency in latent space. To address these challenges, a Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method is proposed. A sketcher module is utilized to provide appropriate control and balance the quality and fidelity of the reconstructed MR images. A VAE adapted for MRI tasks (MR-VAE) is explored, which can serve as the backbone for future MR-related tasks. Furthermore, a variation of the DDIM sampler, called the Dual-Stage Sampler, is proposed to achieve high-fidelity reconstruction in the latent space. The proposed method achieves competitive results on fastMRI datasets, and the effectiveness of each module is demonstrated in ablation experiments.
Abstract:Point Cloud Registration (PCR) is a fundamental and significant issue in photogrammetry and remote sensing, aiming to seek the optimal rigid transformation between sets of points. Achieving efficient and precise PCR poses a considerable challenge. We propose a novel micro-structures graph-based global point cloud registration method. The overall method is comprised of two stages. 1) Coarse registration (CR): We develop a graph incorporating micro-structures, employing an efficient graph-based hierarchical strategy to remove outliers for obtaining the maximal consensus set. We propose a robust GNC-Welsch estimator for optimization derived from a robust estimator to the outlier process in the Lie algebra space, achieving fast and robust alignment. 2) Fine registration (FR): To refine local alignment further, we use the octree approach to adaptive search plane features in the micro-structures. By minimizing the distance from the point-to-plane, we can obtain a more precise local alignment, and the process will also be addressed effectively by being treated as a planar adjustment algorithm combined with Anderson accelerated optimization (PA-AA). After extensive experiments on real data, our proposed method performs well on the 3DMatch and ETH datasets compared to the most advanced methods, achieving higher accuracy metrics and reducing the time cost by at least one-third.
Abstract:Autonomous exploration is one of the important parts to achieve the fast autonomous mapping and target search. However, most of the existing methods are facing low-efficiency problems caused by low-quality trajectory or back-and-forth maneuvers. To improve the exploration efficiency in unknown environments, a fast autonomous exploration planner (FAEP) is proposed in this paper. Different from existing methods, we firstly design a novel frontiers exploration sequence generation method to obtain a more reasonable exploration path, which considers not only the flight-level but frontier-level factors in the asymmetric traveling salesman problem (ATSP). Then, according to the exploration sequence and the distribution of frontiers, an adaptive yaw planning method is proposed to cover more frontiers by yaw change during an exploration journey. In addition, to increase the speed and fluency of flight, a dynamic replanning strategy is also adopted. We present sufficient comparison and evaluation experiments in simulation environments. Experimental results show the proposed exploration planner has better performance in terms of flight time and flight distance compared to typical and state-of-the-art methods. Moreover, the effectiveness of the proposed method is further evaluated in real-world environments.
Abstract:Deploying ultra-dense networks that operate on millimeter wave (mmWave) band is a promising way to address the tremendous growth on mobile data traffic. However, one key challenge of ultra-dense mmWave network (UDmmN) is beam management due to the high propagation delay, limited beam coverage as well as numerous beams and users. In this paper, a novel systematic beam control scheme is presented to tackle the beam management problem which is difficult due to the nonconvex objective function. We employ double deep Q-network (DDQN) under a federated learning (FL) framework to address the above optimization problem, and thereby fulfilling adaptive and intelligent beam management in UDmmN. In the proposed beam management scheme based on FL (BMFL), the non-rawdata aggregation can theoretically protect user privacy while reducing handoff cost. Moreover, we propose to adopt a data cleaning technique in the local model training for BMFL, with the aim to further strengthen the privacy protection of users while improving the learning convergence speed. Simulation results demonstrate the performance gain of our proposed scheme.
Abstract:Intelligent reflecting surface (IRS) has been considered as a promising technology to alleviate the blockage effect and enhance coverage in millimeter wave (mmWave) communication. To explore the impact of IRS on the performance of mmWave communication, we investigate a multi-IRS assisted mmWave communication network and formulate a sum rate maximization problem by jointly optimizing the active and passive beamforming and the set of IRSs for assistance. The optimization problem is intractable due to the lack of convexity of the objective function and the binary nature of the IRS selection variables. To tackle the complex non-convex problem, an alternating iterative approach is proposed. In particular, utilizing the fractional programming method to optimize the active and passive beamforming and the optimization of IRS selection is solved by enumerating. Simulation results demonstrate the performance gain of our proposed approach.
Abstract:We present PanGu-Coder, a pretrained decoder-only language model adopting the PanGu-Alpha architecture for text-to-code generation, i.e. the synthesis of programming language solutions given a natural language problem description. We train PanGu-Coder using a two-stage strategy: the first stage employs Causal Language Modelling (CLM) to pre-train on raw programming language data, while the second stage uses a combination of Causal Language Modelling and Masked Language Modelling (MLM) training objectives that focus on the downstream task of text-to-code generation and train on loosely curated pairs of natural language program definitions and code functions. Finally, we discuss PanGu-Coder-FT, which is fine-tuned on a combination of competitive programming problems and code with continuous integration tests. We evaluate PanGu-Coder with a focus on whether it generates functionally correct programs and demonstrate that it achieves equivalent or better performance than similarly sized models, such as CodeX, while attending a smaller context window and training on less data.
Abstract:Registration is a basic yet crucial task in point cloud processing. In correspondence-based point cloud registration, matching correspondences by point feature techniques may lead to an extremely high outlier ratio. Current methods still suffer from low efficiency, accuracy, and recall rate. We use a simple and intuitive method to describe the 6-DOF (degree of freedom) curtailment process in point cloud registration and propose an outlier removal strategy based on the reliability of the correspondence graph. The method constructs the corresponding graph according to the given correspondences and designs the concept of the reliability degree of the graph node for optimal candidate selection and the reliability degree of the graph edge to obtain the global maximum consensus set. The presented method could achieve fast and accurate outliers removal along with gradual aligning parameters estimation. Extensive experiments on simulations and challenging real-world datasets demonstrate that the proposed method can still perform effective point cloud registration even the correspondence outlier ratio is over 99%, and the efficiency is better than the state-of-the-art. Code is available at https://github.com/WPC-WHU/GROR.
Abstract:Autonomous exploration is one of the important parts to achieve the autonomous operation of Unmanned Aerial Vehicles (UAVs). To improve the efficiency of the exploration process, a fast and autonomous exploration planner (FAEP) is proposed in this paper. We firstly design a novel frontiers exploration sequence generation method to obtain a more reasonable exploration path, which considers not only the flight-level but frontier-level factors into TSP. According to the exploration sequence and the distribution of frontiers, a two-stage heading planning strategy is proposed to cover more frontiers by heading change during an exploration journey. To improve the stability of path searching, a guided kinodynamic path searching based on a guiding path is devised. In addition, a dynamic start point selection method for replanning is also adopted to increase the fluency of flight. We present sufficient benchmark and real-world experiments. Experimental results show the superiority of the proposed exploration planner compared with typical and state-of-the-art methods.
Abstract:This paper explores the role of independence of causal influence (ICI) in Bayesian network inference. ICI allows one to factorize a conditional probability table into smaller pieces. We describe a method for exploiting the factorization in clique tree propagation (CTP) - the state-of-the-art exact inference algorithm for Bayesian networks. We also present empirical results showing that the resulting algorithm is significantly more efficient than the combination of CTP and previous techniques for exploiting ICI.