NYU
Abstract:The standard evaluation protocol for measuring the quality of Knowledge Graph Completion methods - the task of inferring new links to be added to a graph - typically involves a step which ranks every entity of a Knowledge Graph to assess their fit as a head or tail of a candidate link to be added. In Knowledge Graphs on a larger scale, this task rapidly becomes prohibitively heavy. Previous approaches mitigate this problem by using random sampling of entities to assess the quality of links predicted or suggested by a method. However, we show that this approach has serious limitations since the ranking metrics produced do not properly reflect true outcomes. In this paper, we present a thorough analysis of these effects along with the following findings. First, we empirically find and theoretically motivate why sampling uniformly at random vastly overestimates the ranking performance of a method. We show that this can be attributed to the effect of easy versus hard negative candidates. Second, we propose a framework that uses relational recommenders to guide the selection of candidates for evaluation. We provide both theoretical and empirical justification of our methodology, and find that simple and fast methods can work extremely well, and that they match advanced neural approaches. Even when a large portion of true candidates for a property are missed, the estimation barely deteriorates. With our proposed framework, we can reduce the time and computation needed similar to random sampling strategies while vastly improving the estimation; on ogbl-wikikg2, we show that accurate estimations of the full, filtered ranking can be obtained in 20 seconds instead of 30 minutes. We conclude that considerable computational effort can be saved by effective preprocessing and sampling methods and still reliably predict performance accurately of the true performance for the entire ranking procedure.
Abstract:This document describes the Portuguese language podcast dataset released by Spotify for academic research purposes. We give an overview of how the data was sampled, some basic statistics over the collection, as well as brief information of distribution over Brazilian and Portuguese dialects.
Abstract:Podcasts are conversational in nature and speaker changes are frequent -- requiring speaker diarization for content understanding. We propose an unsupervised technique for speaker diarization without relying on language-specific components. The algorithm is overlap-aware and does not require information about the number of speakers. Our approach shows 79% improvement on purity scores (34% on F-score) against the Google Cloud Platform solution on podcast data.
Abstract:Genres can be understood in many different ways. They are often perceived as a primarily sociological construction, or, alternatively, as a stylostatistically observable objective characteristic of texts. The latter view is more common in the research field of information and language technology. These two views can be quite compatible and can inform each other; this present investigation discusses knowledge sources for studying genre variation and change by observing reader and author behaviour rather than performing analyses on the information objects themselves.
Abstract:This chapter argues for more informed target metrics for the statistical processing of stylistic variation in text collections. Much as operationalised relevance proved a useful goal to strive for in information retrieval, research in textual stylistics, whether application oriented or philologically inclined, needs goals formulated in terms of pertinence, relevance, and utility - notions that agree with reader experience of text. Differences readers are aware of are mostly based on utility - not on textual characteristics per se. Mostly, readers report stylistic differences in terms of genres. Genres, while vague and undefined, are well-established and talked about: very early on, readers learn to distinguish genres. This chapter discusses variation given by genre, and contrasts it to variation occasioned by individual choice.
Abstract:Rapidly growing online podcast archives contain diverse content on a wide range of topics. These archives form an important resource for entertainment and professional use, but their value can only be realized if users can rapidly and reliably locate content of interest. Search for relevant content can be based on metadata provided by content creators, but also on transcripts of the spoken content itself. Excavating relevant content from deep within these audio streams for diverse types of information needs requires varying the approach to systems prototyping. We describe a set of diverse podcast information needs and different approaches to assessing retrieved content for relevance. We use these information needs in an investigation of the utility and effectiveness of these information sources. Based on our analysis, we recommend approaches for indexing and retrieving podcast content for ad hoc search.
Abstract:Podcasts are spoken documents across a wide-range of genres and styles, with growing listenership across the world, and a rapidly lowering barrier to entry for both listeners and creators. The great strides in search and recommendation in research and industry have yet to see impact in the podcast space, where recommendations are still largely driven by word of mouth. In this perspective paper, we highlight the many differences between podcasts and other media, and discuss our perspective on challenges and future research directions in the domain of podcast information access.
Abstract:This paper describes how the current lexical similarity and analogy gold standards are built to conform to certain ideas about what the models they are designed to evaluate are used for. Topical relevance has always been the most important target notion for information access tools and related language technology technologies, and while this has proven a useful starting point for much of what information technology is used for, it does not always align well with other uses to which technologies are being put, most notably use cases from digital scholarship in the humanities or social sciences. This paper argues for more systematic formulation of requirements from the digital humanities and social sciences and more explicit description of the assumptions underlying model design.
Abstract:High-dimensional distributed semantic spaces have proven useful and effective for aggregating and processing visual, auditory, and lexical information for many tasks related to human-generated data. Human language makes use of a large and varying number of features, lexical and constructional items as well as contextual and discourse-specific data of various types, which all interact to represent various aspects of communicative information. Some of these features are mostly local and useful for the organisation of e.g. argument structure of a predication; others are persistent over the course of a discourse and necessary for achieving a reasonable level of understanding of the content. This paper describes a model for high-dimensional representation for utterance and text level data including features such as constructions or contextual data, based on a mathematically principled and behaviourally plausible approach to representing linguistic information. The implementation of the representation is a straightforward extension of Random Indexing models previously used for lexical linguistic items. The paper shows how the implemented model is able to represent a broad range of linguistic features in a common integral framework of fixed dimensionality, which is computationally habitable, and which is suitable as a bridge between symbolic representations such as dependency analysis and continuous representations used e.g. in classifiers or further machine-learning approaches. This is achieved with operations on vectors that constitute a powerful computational algebra, accompanied with an associative memory for the vectors. The paper provides a technical overview of the framework and a worked through implemented example of how it can be applied to various types of linguistic features.
Abstract:The Podcast Track is new at the Text Retrieval Conference (TREC) in 2020. The podcast track was designed to encourage research into podcasts in the information retrieval and NLP research communities. The track consisted of two shared tasks: segment retrieval and summarization, both based on a dataset of over 100,000 podcast episodes (metadata, audio, and automatic transcripts) which was released concurrently with the track. The track generated considerable interest, attracted hundreds of new registrations to TREC and fifteen teams, mostly disjoint between search and summarization, made final submissions for assessment. Deep learning was the dominant experimental approach for both search experiments and summarization. This paper gives an overview of the tasks and the results of the participants' experiments. The track will return to TREC 2021 with the same two tasks, incorporating slight modifications in response to participant feedback.