Abstract:LLM-based assistants have been widely popularised after the release of ChatGPT. Concerns have been raised about their misuse in academia, given the difficulty of distinguishing between human-written and generated text. To combat this, automated techniques have been developed and shown to be effective, to some extent. However, prior work suggests that these methods often falsely flag essays from non-native speakers as generated, due to their low perplexity extracted from an LLM, which is supposedly a key feature of the detectors. We revisit these statements two years later, specifically in the Czech language setting. We show that the perplexity of texts from non-native speakers of Czech is not lower than that of native speakers. We further examine detectors from three separate families and find no systematic bias against non-native speakers. Finally, we demonstrate that contemporary detectors operate effectively without relying on perplexity.
Abstract:Recent studies evaluate the value orientation of large language models (LLMs) using adapted social surveys, typically by prompting models with survey questions and comparing their responses to average human responses. This paper identifies limitations in this methodology that, depending on the exact setup, can lead to both underestimating and overestimating the similarity of value orientation. Using the World Value Survey in three languages across five countries, we demonstrate that prompting methods (direct vs. chain-of-thought) and decoding strategies (greedy vs. sampling) significantly affect results. To assess the interaction between answers, we introduce a novel metric, self-correlation distance. This metric measures whether LLMs maintain consistent relationships between answers across different questions, as humans do. This indicates that even a high average agreement with human data, when considering LLM responses independently, does not guarantee structural alignment in responses. Additionally, we reveal a weak correlation between two common evaluation metrics, mean-squared distance and KL divergence, which assume that survey answers are independent of each other. For future research, we recommend CoT prompting, sampling-based decoding with dozens of samples, and robust analysis using multiple metrics, including self-correlation distance.
Abstract:We present a novel metric for the evaluation of the morphological plausibility of subword segmentation. Unlike the typically used morpheme boundary or retrieval F-score, which requires gold segmentation data that is either unavailable or of inconsistent quality across many languages, our approach utilizes morpho-syntactic features. These are available in resources such as Universal Dependencies or UniMorph for a much wider range of languages. The metric works by probabilistically aligning subwords with morphological features through an IBM Model 1. Our experiments show that the metric correlates well with traditional morpheme boundary recall while being more broadly applicable across languages with different morphological systems.
Abstract:This survey examines multilingual vision-language models that process text and images across languages. We review 31 models and 21 benchmarks, spanning encoder-only and generative architectures, and identify a key tension between language neutrality (consistent cross-lingual representations) and cultural awareness (adaptation to cultural contexts). Current training methods favor neutrality through contrastive learning, while cultural awareness depends on diverse data. Two-thirds of evaluation benchmarks use translation-based approaches prioritizing semantic consistency, though recent work incorporates culturally grounded content. We find discrepancies in cross-lingual capabilities and gaps between training objectives and evaluation goals.
Abstract:We introduce a benchmark for open-ended regional question answering that encompasses both textual and visual modalities. We also provide strong baselines using state-of-the-art large language models (LLMs). Our dataset consists of manually curated questions and answers grounded in Wikipedia, created by native speakers from Czechia, Slovakia, and Ukraine, with accompanying English translations. It includes both purely textual questions and those requiring visual understanding. As a baseline, we evaluate state-of-the-art LLMs through prompting and complement this with human judgments of answer correctness. Using these human evaluations, we analyze the reliability of existing automatic evaluation metrics. Our baseline results highlight a significant gap in regional knowledge among current LLMs. Moreover, apart from LLM-based evaluation, there is minimal correlation between automated metrics and human judgment. We release this dataset as a resource to (1) assess regional knowledge in LLMs, (2) study cross-lingual generation consistency in a challenging setting, and (3) advance the development of evaluation metrics for open-ended question answering.
Abstract:Most pre-trained Vision-Language (VL) models and training data for the downstream tasks are only available in English. Therefore, multilingual VL tasks are solved using cross-lingual transfer: fine-tune a multilingual pre-trained model or transfer the text encoder using parallel data. We study the alternative approach: transferring an already trained encoder using parallel data. We investigate the effect of parallel data: domain and the number of languages, which were out of focus in previous work. Our results show that even machine-translated task data are the best on average, caption-like authentic parallel data outperformed it in some languages. Further, we show that most languages benefit from multilingual training.
Abstract:We present the Mu-SHROOM shared task which is focused on detecting hallucinations and other overgeneration mistakes in the output of instruction-tuned large language models (LLMs). Mu-SHROOM addresses general-purpose LLMs in 14 languages, and frames the hallucination detection problem as a span-labeling task. We received 2,618 submissions from 43 participating teams employing diverse methodologies. The large number of submissions underscores the interest of the community in hallucination detection. We present the results of the participating systems and conduct an empirical analysis to identify key factors contributing to strong performance in this task. We also emphasize relevant current challenges, notably the varying degree of hallucinations across languages and the high annotator disagreement when labeling hallucination spans.




Abstract:Previous work has considered token overlap, or even similarity of token distributions, as predictors for multilinguality and cross-lingual knowledge transfer in language models. However, these very literal metrics assign large distances to language pairs with different scripts, which can nevertheless show good cross-linguality. This limits the explanatory strength of token overlap for knowledge transfer between language pairs that use distinct scripts or follow different orthographic conventions. In this paper, we propose subword token alignability as a new way to understand the impact and quality of multilingual tokenisation. In particular, this metric predicts multilinguality much better when scripts are disparate and the overlap of literal tokens is low. We analyse this metric in the context of both encoder and decoder models, look at data size as a potential distractor, and discuss how this insight may be applied to multilingual tokenisation in future work. We recommend our subword token alignability metric for identifying optimal language pairs for cross-lingual transfer, as well as to guide the construction of better multilingual tokenisers in the future. We publish our code and reproducibility details.
Abstract:This paper presents teaching materials, particularly assignments and ideas for classroom activities, from a new course on large language models (LLMs) taught at Charles University. The assignments include experiments with LLM inference for weather report generation and machine translation. The classroom activities include class quizzes, focused research on downstream tasks and datasets, and an interactive "best paper" session aimed at reading and comprehension of research papers.




Abstract:We present three innovations in tokenization and subword segmentation. First, we propose to use unsupervised morphological analysis with Morfessor as pre-tokenization. Second, we present an algebraic method for obtaining subword embeddings grounded in a word embedding space. Based on that, we design a novel subword segmentation algorithm that uses the embeddings, ensuring that the procedure considers lexical meaning. Third, we introduce an efficient segmentation algorithm based on a subword bigram model that can be initialized with the lexically aware segmentation method to avoid using Morfessor and large embedding tables at inference time. We evaluate the proposed approaches using two intrinsic metrics and measure their performance on two downstream tasks: part-of-speech tagging and machine translation. Our experiments show significant improvements in the morphological plausibility of the segmentation when evaluated using segmentation precision on morpheme boundaries and improved R\'enyi efficiency in 8 languages. Although the proposed tokenization methods do not have a large impact on automatic translation quality, we observe consistent performance gains in the arguably more morphological task of part-of-speech tagging.