Picture for Juntang Zhuang

Juntang Zhuang

Tony

GPT-4o System Card

Add code
Oct 25, 2024
Viaarxiv icon

Learning correspondences of cardiac motion from images using biomechanics-informed modeling

Add code
Sep 01, 2022
Figure 1 for Learning correspondences of cardiac motion from images using biomechanics-informed modeling
Figure 2 for Learning correspondences of cardiac motion from images using biomechanics-informed modeling
Figure 3 for Learning correspondences of cardiac motion from images using biomechanics-informed modeling
Figure 4 for Learning correspondences of cardiac motion from images using biomechanics-informed modeling
Viaarxiv icon

Surrogate Gap Minimization Improves Sharpness-Aware Training

Add code
Mar 19, 2022
Figure 1 for Surrogate Gap Minimization Improves Sharpness-Aware Training
Figure 2 for Surrogate Gap Minimization Improves Sharpness-Aware Training
Figure 3 for Surrogate Gap Minimization Improves Sharpness-Aware Training
Figure 4 for Surrogate Gap Minimization Improves Sharpness-Aware Training
Viaarxiv icon

Momentum Centering and Asynchronous Update for Adaptive Gradient Methods

Add code
Oct 17, 2021
Figure 1 for Momentum Centering and Asynchronous Update for Adaptive Gradient Methods
Figure 2 for Momentum Centering and Asynchronous Update for Adaptive Gradient Methods
Figure 3 for Momentum Centering and Asynchronous Update for Adaptive Gradient Methods
Figure 4 for Momentum Centering and Asynchronous Update for Adaptive Gradient Methods
Viaarxiv icon

Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity

Add code
Apr 15, 2021
Figure 1 for Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity
Figure 2 for Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity
Figure 3 for Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity
Figure 4 for Demographic-Guided Attention in Recurrent Neural Networks for Modeling Neuropathophysiological Heterogeneity
Viaarxiv icon

MALI: A memory efficient and reverse accurate integrator for Neural ODEs

Add code
Mar 03, 2021
Figure 1 for MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Figure 2 for MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Figure 3 for MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Figure 4 for MALI: A memory efficient and reverse accurate integrator for Neural ODEs
Viaarxiv icon

Multiple-shooting adjoint method for whole-brain dynamic causal modeling

Add code
Feb 14, 2021
Figure 1 for Multiple-shooting adjoint method for whole-brain dynamic causal modeling
Figure 2 for Multiple-shooting adjoint method for whole-brain dynamic causal modeling
Figure 3 for Multiple-shooting adjoint method for whole-brain dynamic causal modeling
Figure 4 for Multiple-shooting adjoint method for whole-brain dynamic causal modeling
Viaarxiv icon

AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients

Add code
Oct 24, 2020
Figure 1 for AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Figure 2 for AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Figure 3 for AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Figure 4 for AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients
Viaarxiv icon

Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis

Add code
Jul 29, 2020
Figure 1 for Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis
Figure 2 for Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis
Figure 3 for Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis
Figure 4 for Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis
Viaarxiv icon

Neuropsychiatric Disease Classification Using Functional Connectomics -- Results of the Connectomics in NeuroImaging Transfer Learning Challenge

Add code
Jun 05, 2020
Figure 1 for Neuropsychiatric Disease Classification Using Functional Connectomics -- Results of the Connectomics in NeuroImaging Transfer Learning Challenge
Figure 2 for Neuropsychiatric Disease Classification Using Functional Connectomics -- Results of the Connectomics in NeuroImaging Transfer Learning Challenge
Figure 3 for Neuropsychiatric Disease Classification Using Functional Connectomics -- Results of the Connectomics in NeuroImaging Transfer Learning Challenge
Figure 4 for Neuropsychiatric Disease Classification Using Functional Connectomics -- Results of the Connectomics in NeuroImaging Transfer Learning Challenge
Viaarxiv icon