Abstract:The advent of generalist Large Language Models (LLMs) and Large Vision Models (VLMs) have streamlined the construction of semantically enriched maps that can enable robots to ground high-level reasoning and planning into their representations. One of the most widely used semantic map formats is the 3D Scene Graph, which captures both metric (low-level) and semantic (high-level) information. However, these maps often assume a static world, while real environments, like homes and offices, are dynamic. Even small changes in these spaces can significantly impact task performance. To integrate robots into dynamic environments, they must detect changes and update the scene graph in real-time. This update process is inherently multimodal, requiring input from various sources, such as human agents, the robot's own perception system, time, and its actions. This work proposes a framework that leverages these multimodal inputs to maintain the consistency of scene graphs during real-time operation, presenting promising initial results and outlining a roadmap for future research.
Abstract:This paper introduces a method to enhance Interactive Imitation Learning (IIL) by extracting touch interaction points and tracking object movement from video demonstrations. The approach extends current IIL systems by providing robots with detailed knowledge of both where and how to interact with objects, particularly complex articulated ones like doors and drawers. By leveraging cutting-edge techniques such as 3D Gaussian Splatting and FoundationPose for tracking, this method allows robots to better understand and manipulate objects in dynamic environments. The research lays the foundation for more effective task learning and execution in autonomous robotic systems.
Abstract:Recent advances in the fields of natural language processing and computer vision have shown great potential in understanding the underlying dynamics of the world from large-scale internet data. However, translating this knowledge into robotic systems remains an open challenge, given the scarcity of human-robot interactions and the lack of large-scale datasets of real-world robotic data. Previous robot learning approaches such as behavior cloning and reinforcement learning have shown great capabilities in learning robotic skills from human demonstrations or from scratch in specific environments. However, these approaches often require task-specific demonstrations or designing complex simulation environments, which limits the development of generalizable and robust policies for new settings. Aiming to address these limitations, we propose an agent-based framework for grounding robot policies to the current context, considering the constraints of a current robot and its environment using visuomotor-grounded language guidance. The proposed framework is composed of a set of conversational agents designed for specific roles -- namely, high-level advisor, visual grounding, monitoring, and robotic agents. Given a base policy, the agents collectively generate guidance at run time to shift the action distribution of the base policy towards more desirable future states. We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates both in simulation and in real-world experiments without the need for additional human demonstrations or extensive exploration. Project videos at https://sites.google.com/view/motorcortex/home.
Abstract:Verification and validation of autonomous driving (AD) systems and components is of increasing importance, as such technology increases in real-world prevalence. Safety-critical scenario generation is a key approach to robustify AD policies through closed-loop training. However, existing approaches for scenario generation rely on simplistic objectives, resulting in overly-aggressive or non-reactive adversarial behaviors. To generate diverse adversarial yet realistic scenarios, we propose SEAL, a scenario perturbation approach which leverages learned scoring functions and adversarial, human-like skills. SEAL-perturbed scenarios are more realistic than SOTA baselines, leading to improved ego task success across real-world, in-distribution, and out-of-distribution scenarios, of more than 20%. To facilitate future research, we release our code and tools: https://github.com/cmubig/SEAL
Abstract:Resolving the dichotomy between the human-like yet constrained reasoning processes of Cognitive Architectures and the broad but often noisy inference behavior of Large Language Models (LLMs) remains a challenging but exciting pursuit, for enabling reliable machine reasoning capabilities in production systems. Because Cognitive Architectures are famously developed for the purpose of modeling the internal mechanisms of human cognitive decision-making at a computational level, new investigations consider the goal of informing LLMs with the knowledge necessary for replicating such processes, e.g., guided perception, memory, goal-setting, and action. Previous approaches that use LLMs for grounded decision-making struggle with complex reasoning tasks that require slower, deliberate cognition over fast and intuitive inference -- reporting issues related to the lack of sufficient grounding, as in hallucination. To resolve these challenges, we introduce LLM-ACTR, a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making by integrating the ACT-R Cognitive Architecture with LLMs. Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations, injects this information into trainable LLM adapter layers, and fine-tunes the LLMs for downstream prediction. Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability of our approach, compared to LLM-only baselines that leverage chain-of-thought reasoning strategies.
Abstract:Humans are capable of continuously manipulating a wide variety of deformable objects into complex shapes. This is made possible by our intuitive understanding of material properties and mechanics of the object, for reasoning about object states even when visual perception is occluded. These capabilities allow us to perform diverse tasks ranging from cooking with dough to expressing ourselves with pottery-making. However, developing robotic systems to robustly perform similar tasks remains challenging, as current methods struggle to effectively model volumetric deformable objects and reason about the complex behavior they typically exhibit. To study the robotic systems and algorithms capable of deforming volumetric objects, we introduce a novel robotics task of continuously deforming clay on a pottery wheel. We propose a pipeline for perception and pottery skill-learning, called RoPotter, wherein we demonstrate that structural priors specific to the task of pottery-making can be exploited to simplify the pottery skill-learning process. Namely, we can project the cross-section of the clay to a plane to represent the state of the clay, reducing dimensionality. We also demonstrate a mesh-based method of occluded clay state recovery, toward robotic agents capable of continuously deforming clay. Our experiments show that by using the reduced representation with structural priors based on the deformation behaviors of the clay, RoPotter can perform the long-horizon pottery task with 44.4% lower final shape error compared to the state-of-the-art baselines.
Abstract:In order to develop robots that can effectively serve as versatile and capable home assistants, it is crucial for them to reliably perceive and interact with a wide variety of objects across diverse environments. To this end, we proposed Open Vocabulary Mobile Manipulation as a key benchmark task for robotics: finding any object in a novel environment and placing it on any receptacle surface within that environment. We organized a NeurIPS 2023 competition featuring both simulation and real-world components to evaluate solutions to this task. Our baselines on the most challenging version of this task, using real perception in simulation, achieved only an 0.8% success rate; by the end of the competition, the best participants achieved an 10.8\% success rate, a 13x improvement. We observed that the most successful teams employed a variety of methods, yet two common threads emerged among the best solutions: enhancing error detection and recovery, and improving the integration of perception with decision-making processes. In this paper, we detail the results and methodologies used, both in simulation and real-world settings. We discuss the lessons learned and their implications for future research. Additionally, we compare performance in real and simulated environments, emphasizing the necessity for robust generalization to novel settings.
Abstract:Recognizing a traffic accident is an essential part of any autonomous driving or road monitoring system. An accident can appear in a wide variety of forms, and understanding what type of accident is taking place may be useful to prevent it from reoccurring. The task of being able to classify a traffic scene as a specific type of accident is the focus of this work. We approach the problem by likening a traffic scene to a graph, where objects such as cars can be represented as nodes, and relative distances and directions between them as edges. This representation of an accident can be referred to as a scene graph, and is used as input for an accident classifier. Better results can be obtained with a classifier that fuses the scene graph input with representations from vision and language. This work introduces a multi-stage, multimodal pipeline to pre-process videos of traffic accidents, encode them as scene graphs, and align this representation with vision and language modalities for accident classification. When trained on 4 classes, our method achieves a balanced accuracy score of 57.77% on an (unbalanced) subset of the popular Detection of Traffic Anomaly (DoTA) benchmark, representing an increase of close to 5 percentage points from the case where scene graph information is not taken into account.
Abstract:Deep Learning models are incredibly data-hungry and require very large labeled datasets for supervised learning. As a consequence, these models often suffer from overfitting, limiting their ability to generalize to real-world examples. Recent advancements in diffusion models have enabled the generation of photorealistic images based on textual inputs. Leveraging the substantial datasets used to train these diffusion models, we propose a technique to utilize generated images to augment existing datasets. This paper explores various strategies for effective data augmentation to improve the out-of-domain generalization capabilities of deep learning models.
Abstract:Multimodal machine learning has gained significant attention in recent years due to its potential for integrating information from multiple modalities to enhance learning and decision-making processes. However, it is commonly observed that unimodal models outperform multimodal models, despite the latter having access to richer information. Additionally, the influence of a single modality often dominates the decision-making process, resulting in suboptimal performance. This research project aims to address these challenges by proposing a novel regularization term that encourages multimodal models to effectively utilize information from all modalities when making decisions. The focus of this project lies in the video-audio domain, although the proposed regularization technique holds promise for broader applications in embodied AI research, where multiple modalities are involved. By leveraging this regularization term, the proposed approach aims to mitigate the issue of unimodal dominance and improve the performance of multimodal machine learning systems. Through extensive experimentation and evaluation, the effectiveness and generalizability of the proposed technique will be assessed. The findings of this research project have the potential to significantly contribute to the advancement of multimodal machine learning and facilitate its application in various domains, including multimedia analysis, human-computer interaction, and embodied AI research.