Abstract:Spiking Neural Networks (SNNs) are promising energy-efficient models and powerful framworks of modeling neuron dynamics. However, existing binary spiking neurons exhibit limited biological plausibilities and low information capacity. Recently developed ternary spiking neuron possesses higher consistency with biological principles (i.e. excitation-inhibition balance mechanism). Despite of this, the ternary spiking neuron suffers from defects including iterative information loss, temporal gradient vanishing and irregular distributions of membrane potentials. To address these issues, we propose Complemented Ternary Spiking Neuron (CTSN), a novel ternary spiking neuron model that incorporates an learnable complemental term to store information from historical inputs. CTSN effectively improves the deficiencies of ternary spiking neuron, while the embedded learnable factors enable CTSN to adaptively adjust neuron dynamics, providing strong neural heterogeneity. Furthermore, based on the temporal evolution features of ternary spiking neurons' membrane potential distributions, we propose the Temporal Membrane Potential Regularization (TMPR) training method. TMPR introduces time-varying regularization strategy utilizing membrane potentials, furhter enhancing the training process by creating extra backpropagation paths. We validate our methods through extensive experiments on various datasets, demonstrating remarkable performance advances.
Abstract:Existing video object removal methods predominantly rely on diffusion models following a noise-to-data paradigm, where generation starts from uninformative Gaussian noise. This approach discards the rich structural and contextual priors present in the original input video. Consequently, such methods often lack sufficient guidance, leading to incomplete object erasure or the synthesis of implausible content that conflicts with the scene's physical logic. In this paper, we reformulate video object removal as a video-to-video translation task via a stochastic bridge model. Unlike noise-initialized methods, our framework establishes a direct stochastic path from the source video (with objects) to the target video (objects removed). This bridge formulation effectively leverages the input video as a strong structural prior, guiding the model to perform precise removal while ensuring that the filled regions are logically consistent with the surrounding environment. To address the trade-off where strong bridge priors hinder the removal of large objects, we propose a novel adaptive mask modulation strategy. This mechanism dynamically modulates input embeddings based on mask characteristics, balancing background fidelity with generative flexibility. Extensive experiments demonstrate that our approach significantly outperforms existing methods in both visual quality and temporal consistency.
Abstract:Automatic Question Generation (QG) often produces outputs with critical defects, such as factual hallucinations and answer mismatches. However, existing evaluation methods, including LLM-based evaluators, mainly adopt a black-box and holistic paradigm without explicit error modeling, leading to the neglect of such defects and overestimation of question quality. To address this issue, we propose ErrEval, a flexible and Error-aware Evaluation framework that enhances QG evaluation through explicit error diagnostics. Specifically, ErrEval reformulates evaluation as a two-stage process of error diagnosis followed by informed scoring. At the first stage, a lightweight plug-and-play Error Identifier detects and categorizes common errors across structural, linguistic, and content-related aspects. These diagnostic signals are then incorporated as explicit evidence to guide LLM evaluators toward more fine-grained and grounded judgments. Extensive experiments on three benchmarks demonstrate the effectiveness of ErrEval, showing that incorporating explicit diagnostics improves alignment with human judgments. Further analyses confirm that ErrEval effectively mitigates the overestimation of low-quality questions.
Abstract:Autoregressive LLMs perform well on relational tasks that require linking entities via relational words (e.g., father/son, friend), but it is unclear whether they learn the logical semantics of such relations (e.g., symmetry and inversion logic) and, if so, whether reversal-type failures arise from missing relational semantics or left-to-right order bias. We propose a controlled Knowledge Graph-based synthetic framework that generates text from symmetric/inverse triples, train GPT-style autoregressive models from scratch, and evaluate memorization, logical inference, and in-context generalization to unseen entities to address these questions. We find a sharp phase transition in which relational semantics emerge with sufficient logic-bearing supervision, even in shallow (2-3 layer) models, and that successful generalization aligns with stable intermediate-layer signals. Finally, order-matched forward/reverse tests and a diffusion baseline indicate that reversal failures are primarily driven by autoregressive order bias rather than deficient inversion semantics.
Abstract:Representing scenes from multi-view images is a crucial task in computer vision with extensive applications. However, inherent photometric distortions in the camera imaging can significantly degrade image quality. Without accounting for these distortions, the 3D scene representation may inadvertently incorporate erroneous information unrelated to the scene, diminishing the quality of the representation. In this paper, we propose a novel 3D scene-camera representation with joint camera photometric optimization. By introducing internal and external photometric model, we propose a full photometric model and corresponding camera representation. Based on simultaneously optimizing the parameters of the camera representation, the proposed method effectively separates scene-unrelated information from the 3D scene representation. Additionally, during the optimization of the photometric parameters, we introduce a depth regularization to prevent the 3D scene representation from fitting scene-unrelated information. By incorporating the camera model as part of the mapping process, the proposed method constructs a complete map that includes both the scene radiance field and the camera photometric model. Experimental results demonstrate that the proposed method can achieve high-quality 3D scene representations, even under conditions of imaging degradation, such as vignetting and dirt.




Abstract:Few-shot relation extraction with none-of-the-above (FsRE with NOTA) aims at predicting labels in few-shot scenarios with unknown classes. FsRE with NOTA is more challenging than the conventional few-shot relation extraction task, since the boundaries of unknown classes are complex and difficult to learn. Meta-learning based methods, especially prototype-based methods, are the mainstream solutions to this task. They obtain the classification boundary by learning the sample distribution of each class. However, their performance is limited because few-shot overfitting and NOTA boundary confusion lead to misclassification between known and unknown classes. To this end, we propose a novel framework based on Gaussian prototype and adaptive margin named GPAM for FsRE with NOTA, which includes three modules, semi-factual representation, GMM-prototype metric learning and decision boundary learning. The first two modules obtain better representations to solve the few-shot problem through debiased information enhancement and Gaussian space distance measurement. The third module learns more accurate classification boundaries and prototypes through adaptive margin and negative sampling. In the training procedure of GPAM, we use contrastive learning loss to comprehensively consider the effects of range and margin on the classification of known and unknown classes to ensure the model's stability and robustness. Sufficient experiments and ablations on the FewRel dataset show that GPAM surpasses previous prototype methods and achieves state-of-the-art performance.




Abstract:We propose GGAvatar, a novel 3D avatar representation designed to robustly model dynamic head avatars with complex identities and deformations. GGAvatar employs a coarse-to-fine structure, featuring two core modules: Neutral Gaussian Initialization Module and Geometry Morph Adjuster. Neutral Gaussian Initialization Module pairs Gaussian primitives with deformable triangular meshes, employing an adaptive density control strategy to model the geometric structure of the target subject with neutral expressions. Geometry Morph Adjuster introduces deformation bases for each Gaussian in global space, creating fine-grained low-dimensional representations of deformation behaviors to address the Linear Blend Skinning formula's limitations effectively. Extensive experiments show that GGAvatar can produce high-fidelity renderings, outperforming state-of-the-art methods in visual quality and quantitative metrics.
Abstract:The discussion on causality in human history dates back to ancient Greece, yet to this day, there is still no consensus. Fundamentally, this stems from the nature of human cognition, as understanding causality requires abstract tools to transcend the limitations of human cognition. In recent decades, the rapid development of mathematical and computational tools has provided new theoretical and technical means for exploring causality, creating more avenues for investigation. Based on this, this paper introduces a new definition of causality using category theory, proposed by Samuel Eilenberg and Saunders Mac Lane in 1945 to avoid the self-referential contradictions in set theory, notably the Russell paradox. Within this framework, the feasibility of indicator synthesis in causal inference is demonstrated. Due to the limitations in the development of category theory-related technical tools, this paper adopts the widely-used probabilistic causal graph tool proposed by Judea Pearl in 1995 to study the application of causal inference in personal credit risk management. The specific work includes: research on the construction method of causal inference index system, definition of causality and feasibility proof of indicator synthesis causal inference within this framework, application methods of causal graph model and intervention alternative criteria in personal credit risk management, and so on.
Abstract:We introduce a novel task, called Generalized Relation Discovery (GRD), for open-world relation extraction. GRD aims to identify unlabeled instances in existing pre-defined relations or discover novel relations by assigning instances to clusters as well as providing specific meanings for these clusters. The key challenges of GRD are how to mitigate the serious model biases caused by labeled pre-defined relations to learn effective relational representations and how to determine the specific semantics of novel relations during classifying or clustering unlabeled instances. We then propose a novel framework, SFGRD, for this task to solve the above issues by learning from semi-factuals in two stages. The first stage is semi-factual generation implemented by a tri-view debiased relation representation module, in which we take each original sentence as the main view and design two debiased views to generate semi-factual examples for this sentence. The second stage is semi-factual thinking executed by a dual-space tri-view collaborative relation learning module, where we design a cluster-semantic space and a class-index space to learn relational semantics and relation label indices, respectively. In addition, we devise alignment and selection strategies to integrate two spaces and establish a self-supervised learning loop for unlabeled data by doing semi-factual thinking across three views. Extensive experimental results show that SFGRD surpasses state-of-the-art models in terms of accuracy by 2.36\% $\sim$5.78\% and cosine similarity by 32.19\%$\sim$ 84.45\% for relation label index and relation semantic quality, respectively. To the best of our knowledge, we are the first to exploit the efficacy of semi-factuals in relation extraction.
Abstract:The conventional pretraining-and-finetuning paradigm, while effective for common diseases with ample data, faces challenges in diagnosing data-scarce occupational diseases like pneumoconiosis. Recently, large language models (LLMs) have exhibits unprecedented ability when conducting multiple tasks in dialogue, bringing opportunities to diagnosis. A common strategy might involve using adapter layers for vision-language alignment and diagnosis in a dialogic manner. Yet, this approach often requires optimization of extensive learnable parameters in the text branch and the dialogue head, potentially diminishing the LLMs' efficacy, especially with limited training data. In our work, we innovate by eliminating the text branch and substituting the dialogue head with a classification head. This approach presents a more effective method for harnessing LLMs in diagnosis with fewer learnable parameters. Furthermore, to balance the retention of detailed image information with progression towards accurate diagnosis, we introduce the contextual multi-token engine. This engine is specialized in adaptively generating diagnostic tokens. Additionally, we propose the information emitter module, which unidirectionally emits information from image tokens to diagnosis tokens. Comprehensive experiments validate the superiority of our methods and the effectiveness of proposed modules. Our codes can be found at https://github.com/CodeMonsterPHD/PneumoLLM/tree/main.