Picture for Benjamin Morrell

Benjamin Morrell

Jet Propulsion Lab., California Institute of Technology and

An Addendum to NeBula: Towards Extending TEAM CoSTAR's Solution to Larger Scale Environments

Add code
Apr 18, 2025
Viaarxiv icon

Present and Future of SLAM in Extreme Underground Environments

Add code
Aug 02, 2022
Figure 1 for Present and Future of SLAM in Extreme Underground Environments
Figure 2 for Present and Future of SLAM in Extreme Underground Environments
Figure 3 for Present and Future of SLAM in Extreme Underground Environments
Figure 4 for Present and Future of SLAM in Extreme Underground Environments
Viaarxiv icon

LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments

Add code
May 31, 2022
Figure 1 for LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
Figure 2 for LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
Figure 3 for LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
Figure 4 for LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments
Viaarxiv icon

Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM

Add code
May 24, 2022
Figure 1 for Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
Figure 2 for Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
Figure 3 for Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
Figure 4 for Loop Closure Prioritization for Efficient and Scalable Multi-Robot SLAM
Viaarxiv icon

LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time Underground 3D Mapping

Add code
May 24, 2022
Figure 1 for LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time Underground 3D Mapping
Figure 2 for LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time Underground 3D Mapping
Figure 3 for LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time Underground 3D Mapping
Figure 4 for LOCUS 2.0: Robust and Computationally Efficient Lidar Odometry for Real-Time Underground 3D Mapping
Viaarxiv icon

Exploring Event Camera-based Odometry for Planetary Robots

Add code
Apr 12, 2022
Figure 1 for Exploring Event Camera-based Odometry for Planetary Robots
Figure 2 for Exploring Event Camera-based Odometry for Planetary Robots
Figure 3 for Exploring Event Camera-based Odometry for Planetary Robots
Figure 4 for Exploring Event Camera-based Odometry for Planetary Robots
Viaarxiv icon

NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge

Add code
Mar 28, 2021
Figure 1 for NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge
Figure 2 for NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge
Figure 3 for NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge
Figure 4 for NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge
Viaarxiv icon

Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments

Add code
Oct 31, 2020
Figure 1 for Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments
Figure 2 for Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments
Figure 3 for Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments
Figure 4 for Unsupervised Deep Persistent Monocular Visual Odometry and Depth Estimation in Extreme Environments
Viaarxiv icon

Towards Resilient Autonomous Navigation of Drones

Add code
Aug 21, 2020
Figure 1 for Towards Resilient Autonomous Navigation of Drones
Figure 2 for Towards Resilient Autonomous Navigation of Drones
Figure 3 for Towards Resilient Autonomous Navigation of Drones
Figure 4 for Towards Resilient Autonomous Navigation of Drones
Viaarxiv icon

The Shapeshifter: a Morphing, Multi-Agent,Multi-Modal Robotic Platform for the Exploration of Titan

Add code
Mar 16, 2020
Figure 1 for The Shapeshifter: a Morphing, Multi-Agent,Multi-Modal Robotic Platform for the Exploration of Titan
Figure 2 for The Shapeshifter: a Morphing, Multi-Agent,Multi-Modal Robotic Platform for the Exploration of Titan
Figure 3 for The Shapeshifter: a Morphing, Multi-Agent,Multi-Modal Robotic Platform for the Exploration of Titan
Figure 4 for The Shapeshifter: a Morphing, Multi-Agent,Multi-Modal Robotic Platform for the Exploration of Titan
Viaarxiv icon