Abstract:We introduce Planning-guided Retrieval Augmented Generation (Plan$\times$RAG), a novel framework that augments the \emph{retrieve-then-reason} paradigm of existing RAG frameworks to \emph{plan-then-retrieve}. Plan$\times$RAG formulates a reasoning plan as a directed acyclic graph (DAG), decomposing queries into interrelated atomic sub-queries. Answer generation follows the DAG structure, allowing significant gains in efficiency through parallelized retrieval and generation. While state-of-the-art RAG solutions require extensive data generation and fine-tuning of language models (LMs), Plan$\times$RAG incorporates frozen LMs as plug-and-play experts to generate high-quality answers. Compared to existing RAG solutions, Plan$\times$RAG demonstrates significant improvements in reducing hallucinations and bolstering attribution due to its structured sub-query decomposition. Overall, Plan$\times$RAG offers a new perspective on integrating external knowledge in LMs while ensuring attribution by design, contributing towards more reliable LM-based systems.
Abstract:Extreme Classification (XC) aims to map a query to the most relevant documents from a very large document set. XC algorithms used in real-world applications learn this mapping from datasets curated from implicit feedback, such as user clicks. However, these datasets inevitably suffer from missing labels. In this work, we observe that systematic missing labels lead to missing knowledge, which is critical for accurately modelling relevance between queries and documents. We formally show that this absence of knowledge cannot be recovered using existing methods such as propensity weighting and data imputation strategies that solely rely on the training dataset. While LLMs provide an attractive solution to augment the missing knowledge, leveraging them in applications with low latency requirements and large document sets is challenging. To incorporate missing knowledge at scale, we propose SKIM (Scalable Knowledge Infusion for Missing Labels), an algorithm that leverages a combination of small LM and abundant unstructured meta-data to effectively mitigate the missing label problem. We show the efficacy of our method on large-scale public datasets through exhaustive unbiased evaluation ranging from human annotations to simulations inspired from industrial settings. SKIM outperforms existing methods on Recall@100 by more than 10 absolute points. Additionally, SKIM scales to proprietary query-ad retrieval datasets containing 10 million documents, outperforming contemporary methods by 12% in offline evaluation and increased ad click-yield by 1.23% in an online A/B test conducted on a popular search engine. We release our code, prompts, trained XC models and finetuned SLMs at: https://github.com/bicycleman15/skim
Abstract:For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated.
Abstract:Given an input query, a recommendation model is trained using user feedback data (e.g., click data) to output a ranked list of items. In real-world systems, besides accuracy, an important consideration for a new model is novelty of its top-k recommendations w.r.t. an existing deployed model. However, novelty of top-k items is a difficult goal to optimize a model for, since it involves a non-differentiable sorting operation on the model's predictions. Moreover, novel items, by definition, do not have any user feedback data. Given the semantic capabilities of large language models, we address these problems using a reinforcement learning (RL) formulation where large language models provide feedback for the novel items. However, given millions of candidate items, the sample complexity of a standard RL algorithm can be prohibitively high. To reduce sample complexity, we reduce the top-k list reward to a set of item-wise rewards and reformulate the state space to consist of <query, item> tuples such that the action space is reduced to a binary decision; and show that this reformulation results in a significantly lower complexity when the number of items is large. We evaluate the proposed algorithm on improving novelty for a query-ad recommendation task on a large-scale search engine. Compared to supervised finetuning on recent <query, ad> pairs, the proposed RL-based algorithm leads to significant novelty gains with minimal loss in recall. We obtain similar results on the ORCAS query-webpage matching dataset and a product recommendation dataset based on Amazon reviews.
Abstract:Given a task in the form of a basic description and its training examples, prompt optimization is the problem of synthesizing the given information into a text prompt for a large language model (LLM). Humans solve this problem by also considering the different facets that define a task (e.g., counter-examples, explanations, analogies) and including them in the prompt. However, it is unclear whether existing algorithmic approaches, based on iteratively editing a given prompt or automatically selecting a few in-context examples, can cover the multiple facets required to solve a complex task. In this work, we view prompt optimization as that of learning multiple facets of a task from a set of training examples. We identify and exploit structure in the prompt optimization problem -- first, we find that prompts can be broken down into loosely coupled semantic sections that have a relatively independent effect on the prompt's performance; second, we cluster the input space and use clustered batches so that the optimization procedure can learn the different facets of a task across batches. The resulting algorithm, UniPrompt, consists of a generative model to generate initial candidates for each prompt section; and a feedback mechanism that aggregates suggested edits from multiple mini-batches into a conceptual description for the section. Empirical evaluation on multiple datasets and a real-world task shows that prompts generated using UniPrompt obtain higher accuracy than human-tuned prompts and those from state-of-the-art methods. In particular, our algorithm can generate long, complex prompts that existing methods are unable to generate. Code for UniPrompt will be available at \url{https://aka.ms/uniprompt}.
Abstract:This paper presents a comparative analysis of total cost of ownership (TCO) and performance between domain-adapted large language models (LLM) and state-of-the-art (SoTA) LLMs , with a particular emphasis on tasks related to coding assistance for chip design. We examine the TCO and performance metrics of a domain-adaptive LLM, ChipNeMo, against two leading LLMs, Claude 3 Opus and ChatGPT-4 Turbo, to assess their efficacy in chip design coding generation. Through a detailed evaluation of the accuracy of the model, training methodologies, and operational expenditures, this study aims to provide stakeholders with critical information to select the most economically viable and performance-efficient solutions for their specific needs. Our results underscore the benefits of employing domain-adapted models, such as ChipNeMo, that demonstrate improved performance at significantly reduced costs compared to their general-purpose counterparts. In particular, we reveal the potential of domain-adapted LLMs to decrease TCO by approximately 90%-95%, with the cost advantages becoming increasingly evident as the deployment scale expands. With expansion of deployment, the cost benefits of ChipNeMo become more pronounced, making domain-adaptive LLMs an attractive option for organizations with substantial coding needs supported by LLMs
Abstract:The effective management of brain tumors relies on precise typing, subtyping, and grading. This study advances patient care with findings from rigorous multiple instance learning experimentations across various feature extractors and aggregators in brain tumor histopathology. It establishes new performance benchmarks in glioma subtype classification across multiple datasets, including a novel dataset focused on the Indian demographic (IPD- Brain), providing a valuable resource for existing research. Using a ResNet-50, pretrained on histopathology datasets for feature extraction, combined with the Double-Tier Feature Distillation (DTFD) feature aggregator, our approach achieves state-of-the-art AUCs of 88.08 on IPD-Brain and 95.81 on the TCGA-Brain dataset, respectively, for three-way glioma subtype classification. Moreover, it establishes new benchmarks in grading and detecting IHC molecular biomarkers (IDH1R132H, TP53, ATRX, Ki-67) through H&E stained whole slide images for the IPD-Brain dataset. The work also highlights a significant correlation between the model decision-making processes and the diagnostic reasoning of pathologists, underscoring its capability to mimic professional diagnostic procedures.
Abstract:Recent work shows that in-context learning and optimization of in-context examples (ICE) can significantly improve the accuracy of large language models (LLMs) on a wide range of tasks, leading to an apparent consensus that ICE optimization is crucial for better performance. However, most of these studies assume a fixed or no instruction provided in the prompt. We challenge this consensus by investigating the necessity of optimizing ICE when task-specific instructions are provided and find that there are tasks for which it yields diminishing returns. In particular, using a diverse set of tasks and a systematically created instruction set with gradually added details, we find that as the prompt instruction becomes more detailed, the returns on ICE optimization diminish. To characterize this behavior, we introduce a task-specific metric called Normalized Invariability to Choice of Examples (NICE) that quantifies the learnability of tasks from a given instruction, and provides a heuristic that helps decide whether to optimize instructions or ICE for a new task. Given a task, the proposed metric can reliably predict the utility of optimizing ICE compared to using random ICE.
Abstract:Amid rising concerns of reproducibility and generalizability in predictive modeling, we explore the possibility and potential benefits of introducing pre-registration to the field. Despite notable advancements in predictive modeling, spanning core machine learning tasks to various scientific applications, challenges such as overlooked contextual factors, data-dependent decision-making, and unintentional re-use of test data have raised questions about the integrity of results. To address these issues, we propose adapting pre-registration practices from explanatory modeling to predictive modeling. We discuss current best practices in predictive modeling and their limitations, introduce a lightweight pre-registration template, and present a qualitative study with machine learning researchers to gain insight into the effectiveness of pre-registration in preventing biased estimates and promoting more reliable research outcomes. We conclude by exploring the scope of problems that pre-registration can address in predictive modeling and acknowledging its limitations within this context.
Abstract:Given a query and a document corpus, the information retrieval (IR) task is to output a ranked list of relevant documents. Combining large language models (LLMs) with embedding-based retrieval models, recent work shows promising results on the zero-shot retrieval problem, i.e., no access to labeled data from the target domain. Two such popular paradigms are generation-augmented retrieval or GAR (generate additional context for the query and then retrieve), and retrieval-augmented generation or RAG (retrieve relevant documents as context and then generate answers). The success of these paradigms hinges on (i) high-recall retrieval models, which are difficult to obtain in the zero-shot setting, and (ii) high-precision (re-)ranking models which typically need a good initialization. In this work, we propose a novel GAR-meets-RAG recurrence formulation that overcomes the challenges of existing paradigms. Our method iteratively improves retrieval (via GAR) and rewrite (via RAG) stages in the zero-shot setting. A key design principle is that the rewrite-retrieval stages improve the recall of the system and a final re-ranking stage improves the precision. We conduct extensive experiments on zero-shot passage retrieval benchmarks, BEIR and TREC-DL. Our method establishes a new state-of-the-art in the BEIR benchmark, outperforming previous best results in Recall@100 and nDCG@10 metrics on 6 out of 8 datasets, with up to 17% relative gains over the previous best.