Abstract:Despite the increasing effectiveness of language models, their reasoning capabilities remain underdeveloped. In particular, causal reasoning through counterfactual question answering is lacking. This work aims to bridge this gap. We first derive novel metrics that balance accuracy in factual and counterfactual questions, capturing a more complete view of the reasoning abilities of language models than traditional factual-only based metrics. Second, we propose several fine-tuning approaches that aim to elicit better reasoning mechanisms, in the sense of the proposed metrics. Finally, we evaluate the performance of the fine-tuned language models in a variety of realistic scenarios. In particular, we investigate to what extent our fine-tuning approaches systemically achieve better generalization with respect to the base models in several problems that require, among others, inductive and deductive reasoning capabilities.
Abstract:Recent advances in AI have been significantly driven by the capabilities of large language models (LLMs) to solve complex problems in ways that resemble human thinking. However, there is an ongoing debate about the extent to which LLMs are capable of actual reasoning. Central to this debate are two key probabilistic concepts that are essential for connecting causes to their effects: the probability of necessity (PN) and the probability of sufficiency (PS). This paper introduces a framework that is both theoretical and practical, aimed at assessing how effectively LLMs are able to replicate real-world reasoning mechanisms using these probabilistic measures. By viewing LLMs as abstract machines that process information through a natural language interface, we examine the conditions under which it is possible to compute suitable approximations of PN and PS. Our research marks an important step towards gaining a deeper understanding of when LLMs are capable of reasoning, as illustrated by a series of math examples.
Abstract:Large language models (LLMs) are powerful AI tools that can generate and comprehend natural language text and other complex information. However, the field lacks a mathematical framework to systematically describe, compare and improve LLMs. We propose Hex a framework that clarifies key terms and concepts in LLM research, such as hallucinations, alignment, self-verification and chain-of-thought reasoning. The Hex framework offers a precise and consistent way to characterize LLMs, identify their strengths and weaknesses, and integrate new findings. Using Hex, we differentiate chain-of-thought reasoning from chain-of-thought prompting and establish the conditions under which they are equivalent. This distinction clarifies the basic assumptions behind chain-of-thought prompting and its implications for methods that use it, such as self-verification and prompt programming. Our goal is to provide a formal framework for LLMs that can help both researchers and practitioners explore new possibilities for generative AI. We do not claim to have a definitive solution, but rather a tool for opening up new research avenues. We argue that our formal definitions and results are crucial for advancing the discussion on how to build generative AI systems that are safe, reliable, fair and robust, especially in domains like healthcare and software engineering.
Abstract:The recent success of general-domain large language models (LLMs) has significantly changed the natural language processing paradigm towards a unified foundation model across domains and applications. In this paper, we focus on assessing the performance of GPT-4, the most capable LLM so far, on the text-based applications for radiology reports, comparing against state-of-the-art (SOTA) radiology-specific models. Exploring various prompting strategies, we evaluated GPT-4 on a diverse range of common radiology tasks and we found GPT-4 either outperforms or is on par with current SOTA radiology models. With zero-shot prompting, GPT-4 already obtains substantial gains ($\approx$ 10% absolute improvement) over radiology models in temporal sentence similarity classification (accuracy) and natural language inference ($F_1$). For tasks that require learning dataset-specific style or schema (e.g. findings summarisation), GPT-4 improves with example-based prompting and matches supervised SOTA. Our extensive error analysis with a board-certified radiologist shows GPT-4 has a sufficient level of radiology knowledge with only occasional errors in complex context that require nuanced domain knowledge. For findings summarisation, GPT-4 outputs are found to be overall comparable with existing manually-written impressions.
Abstract:Neural networks are becoming increasingly prevalent in software, and it is therefore important to be able to verify their behavior. Because verifying the correctness of neural networks is extremely challenging, it is common to focus on the verification of other properties of these systems. One important property, in particular, is robustness. Most existing definitions of robustness, however, focus on the worst-case scenario where the inputs are adversarial. Such notions of robustness are too strong, and unlikely to be satisfied by-and verifiable for-practical neural networks. Observing that real-world inputs to neural networks are drawn from non-adversarial probability distributions, we propose a novel notion of robustness: probabilistic robustness, which requires the neural network to be robust with at least $(1 - \epsilon)$ probability with respect to the input distribution. This probabilistic approach is practical and provides a principled way of estimating the robustness of a neural network. We also present an algorithm, based on abstract interpretation and importance sampling, for checking whether a neural network is probabilistically robust. Our algorithm uses abstract interpretation to approximate the behavior of a neural network and compute an overapproximation of the input regions that violate robustness. It then uses importance sampling to counter the effect of such overapproximation and compute an accurate estimate of the probability that the neural network violates the robustness property.