Macquarie University- Sydney-Australia
Abstract:Continual learning (CL) enables models to adapt to evolving data streams. A major challenge of CL is catastrophic forgetting, where new knowledge will overwrite previously acquired knowledge. Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge, which has high memory requirements. In this paper, we propose a novel lightweight CL framework, Adapter-Enhanced Semantic Prompting (AESP), which integrates prompt tuning and adapter techniques. Specifically, we design semantic-guided prompts to enhance the generalization ability of visual features and utilize adapters to efficiently fuse the semantic information, aiming to learn more adaptive features for the continual learning task. Furthermore, to choose the right task prompt for feature adaptation, we have developed a novel matching mechanism for prompt selection. Extensive experiments on three CL datasets demonstrate that our approach achieves favorable performance across multiple metrics, showing its potential for advancing CL.
Abstract:Federated learning (FL) has emerged as a prominent machine learning paradigm in edge computing environments, enabling edge devices to collaboratively optimize a global model without sharing their private data. However, existing FL frameworks suffer from efficacy deterioration due to the system heterogeneity inherent in edge computing, especially in the presence of domain shifts across local data. In this paper, we propose a heterogeneous FL framework DapperFL, to enhance model performance across multiple domains. In DapperFL, we introduce a dedicated Model Fusion Pruning (MFP) module to produce personalized compact local models for clients to address the system heterogeneity challenges. The MFP module prunes local models with fused knowledge obtained from both local and remaining domains, ensuring robustness to domain shifts. Additionally, we design a Domain Adaptive Regularization (DAR) module to further improve the overall performance of DapperFL. The DAR module employs regularization generated by the pruned model, aiming to learn robust representations across domains. Furthermore, we introduce a specific aggregation algorithm for aggregating heterogeneous local models with tailored architectures and weights. We implement DapperFL on a realworld FL platform with heterogeneous clients. Experimental results on benchmark datasets with multiple domains demonstrate that DapperFL outperforms several state-of-the-art FL frameworks by up to 2.28%, while significantly achieving model volume reductions ranging from 20% to 80%. Our code is available at: https://github.com/jyzgh/DapperFL.
Abstract:While large language models (LLMs) have exhibited impressive conversational capabilities, their proficiency in delivering personalized responses remains unclear. Although recent benchmarks automatically evaluate persona consistency in role-playing contexts using LLM-based judgment, the evaluation of personalization in response generation remains underexplored. To address this gap, we present a new benchmark, PersoBench, to evaluate the personalization ability of LLMs in persona-aware dialogue generation within a zero-shot setting. We assess the performance of three open-source and three closed-source LLMs using well-known datasets and a range of metrics. Our analysis, conducted on three well-known persona-aware datasets, evaluates multiple dimensions of response quality, including fluency, diversity, coherence, and personalization, across both standard and chain-of-thought prompting methods. Our findings reveal that while LLMs excel at generating fluent and diverse responses, they are far from satisfactory in delivering personalized and coherent responses considering both the conversation context and the provided personas. Our benchmark implementation is available at https://github.com/salehafzoon/PersoBench.
Abstract:As generative Artificial Intelligence (AI) technologies evolve, they offer unprecedented potential to automate and enhance various tasks, including coding. Natural Language-Oriented Programming (NLOP), a vision introduced in this paper, harnesses this potential by allowing developers to articulate software requirements and logic in their natural language, thereby democratizing software creation. This approach streamlines the development process and significantly lowers the barrier to entry for software engineering, making it feasible for non-experts to contribute effectively to software projects. By simplifying the transition from concept to code, NLOP can accelerate development cycles, enhance collaborative efforts, and reduce misunderstandings in requirement specifications. This paper reviews various programming models, assesses their contributions and limitations, and highlights that natural language will be the new programming language. Through this comparison, we illustrate how NLOP stands to transform the landscape of software engineering by fostering greater inclusivity and innovation.
Abstract:Exploring the complex structure of the human brain is crucial for understanding its functionality and diagnosing brain disorders. Thanks to advancements in neuroimaging technology, a novel approach has emerged that involves modeling the human brain as a graph-structured pattern, with different brain regions represented as nodes and the functional relationships among these regions as edges. Moreover, graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data. Developing GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention. However, there is a lack of systematic survey work summarizing current research methods in this domain. In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs. We first introduce the process of brain graph modeling based on common neuroimaging data. Subsequently, we systematically categorize current works based on the type of brain graph generated and the targeted research problems. To make this research accessible to a broader range of interested researchers, we provide an overview of representative methods and commonly used datasets, along with their implementation sources. Finally, we present our insights on future research directions. The repository of this survey is available at \url{https://github.com/XuexiongLuoMQ/Awesome-Brain-Graph-Learning-with-GNNs}.
Abstract:Eye-gaze tracking research offers significant promise in enhancing various healthcare-related tasks, above all in medical image analysis and interpretation. Eye tracking, a technology that monitors and records the movement of the eyes, provides valuable insights into human visual attention patterns. This technology can transform how healthcare professionals and medical specialists engage with and analyze diagnostic images, offering a more insightful and efficient approach to medical diagnostics. Hence, extracting meaningful features and insights from medical images by leveraging eye-gaze data improves our understanding of how radiologists and other medical experts monitor, interpret, and understand images for diagnostic purposes. Eye-tracking data, with intricate human visual attention patterns embedded, provides a bridge to integrating artificial intelligence (AI) development and human cognition. This integration allows novel methods to incorporate domain knowledge into machine learning (ML) and deep learning (DL) approaches to enhance their alignment with human-like perception and decision-making. Moreover, extensive collections of eye-tracking data have also enabled novel ML/DL methods to analyze human visual patterns, paving the way to a better understanding of human vision, attention, and cognition. This systematic review investigates eye-gaze tracking applications and methodologies for enhancing ML/DL algorithms for medical image analysis in depth.
Abstract:Given a script, the challenge in Movie Dubbing (Visual Voice Cloning, V2C) is to generate speech that aligns well with the video in both time and emotion, based on the tone of a reference audio track. Existing state-of-the-art V2C models break the phonemes in the script according to the divisions between video frames, which solves the temporal alignment problem but leads to incomplete phoneme pronunciation and poor identity stability. To address this problem, we propose StyleDubber, which switches dubbing learning from the frame level to phoneme level. It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; And (3) a phoneme-guided lip aligner to maintain lip sync. Extensive experiments on two of the primary benchmarks, V2C and Grid, demonstrate the favorable performance of the proposed method as compared to the current state-of-the-art. The source code and trained models will be released to the public.
Abstract:Federated Learning (FL) has emerged as a promising solution in Edge Computing (EC) environments to process the proliferation of data generated by edge devices. By collaboratively optimizing the global machine learning models on distributed edge devices, FL circumvents the need for transmitting raw data and enhances user privacy. Despite practical successes, FL still confronts significant challenges including constrained edge device resources, multiple tasks deployment, and data heterogeneity. However, existing studies focus on mitigating the FL training costs of each single task whereas neglecting the resource consumption across multiple tasks in heterogeneous FL scenarios. In this paper, we propose Heterogeneous Federated Learning with Local Parameter Sharing (FedLPS) to fill this gap. FedLPS leverages principles from transfer learning to facilitate the deployment of multiple tasks on a single device by dividing the local model into a shareable encoder and task-specific encoders. To further reduce resource consumption, a channel-wise model pruning algorithm that shrinks the footprint of local models while accounting for both data and system heterogeneity is employed in FedLPS. Additionally, a novel heterogeneous model aggregation algorithm is proposed to aggregate the heterogeneous predictors in FedLPS. We implemented the proposed FedLPS on a real FL platform and compared it with state-of-the-art (SOTA) FL frameworks. The experimental results on five popular datasets and two modern DNN models illustrate that the proposed FedLPS significantly outperforms the SOTA FL frameworks by up to 4.88% and reduces the computational resource consumption by 21.3%. Our code is available at:https://github.com/jyzgh/FedLPS.
Abstract:Schizophrenia (SZ) is a prevalent mental disorder characterized by cognitive, emotional, and behavioral changes. Symptoms of SZ include hallucinations, illusions, delusions, lack of motivation, and difficulties in concentration. Diagnosing SZ involves employing various tools, including clinical interviews, physical examinations, psychological evaluations, the Diagnostic and Statistical Manual of Mental Disorders (DSM), and neuroimaging techniques. Electroencephalography (EEG) recording is a significant functional neuroimaging modality that provides valuable insights into brain function during SZ. However, EEG signal analysis poses challenges for neurologists and scientists due to the presence of artifacts, long-term recordings, and the utilization of multiple channels. To address these challenges, researchers have introduced artificial intelligence (AI) techniques, encompassing conventional machine learning (ML) and deep learning (DL) methods, to aid in SZ diagnosis. This study reviews papers focused on SZ diagnosis utilizing EEG signals and AI methods. The introduction section provides a comprehensive explanation of SZ diagnosis methods and intervention techniques. Subsequently, review papers in this field are discussed, followed by an introduction to the AI methods employed for SZ diagnosis and a summary of relevant papers presented in tabular form. Additionally, this study reports on the most significant challenges encountered in SZ diagnosis, as identified through a review of papers in this field. Future directions to overcome these challenges are also addressed. The discussion section examines the specific details of each paper, culminating in the presentation of conclusions and findings.
Abstract:The exponential growth of textual data has created a crucial need for tools that assist users in extracting meaningful insights. Traditional document summarization approaches often fail to meet individual user requirements and lack structure for efficient information processing. To address these limitations, we propose Summation, a hierarchical personalized concept-based summarization approach. It synthesizes documents into a concise hierarchical concept map and actively engages users by learning and adapting to their preferences. Using a Reinforcement Learning algorithm, Summation generates personalized summaries for unseen documents on specific topics. This framework enhances comprehension, enables effective navigation, and empowers users to extract meaningful insights from large document collections aligned with their unique requirements.