Abstract:The rapid advancement of Intelligent Transportation Systems (ITS) presents challenges, particularly with missing data in multi-modal transportation and the complexity of handling diverse sequential tasks within a centralized framework. To address these issues, we propose the Spatial-Temporal Large Language Model Diffusion (STLLM-DF), an innovative model that leverages Denoising Diffusion Probabilistic Models (DDPMs) and Large Language Models (LLMs) to improve multi-task transportation prediction. The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs, making it particularly effective in complex transportation systems. Meanwhile, the non-pretrained LLM dynamically adapts to spatial-temporal relationships within multi-modal networks, allowing the system to efficiently manage diverse transportation tasks in both long-term and short-term predictions. Extensive experiments demonstrate that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40\% in MAE, 4.50\% in RMSE, and 1.51\% in MAPE. This model significantly advances centralized ITS by enhancing predictive accuracy, robustness, and overall system performance across multiple tasks, thus paving the way for more effective spatio-temporal traffic forecasting through the integration of frozen transformer language models and diffusion techniques.
Abstract:Link prediction is a key aspect of graph machine learning, with applications as diverse as disease prediction, social network recommendations, and drug discovery. It involves predicting new links that may form between network nodes. Despite the clear importance of link prediction, existing models have significant shortcomings. Graph Convolutional Networks, for instance, have been proven to be highly efficient for link prediction on a variety of datasets. However, they encounter severe limitations when applied to short-path networks and ego networks, resulting in poor performance. This presents a critical problem space that this work aims to address. In this paper, we present the Node Centrality and Similarity Based Parameterised Model (NCSM), a novel method for link prediction tasks. NCSM uniquely integrates node centrality and similarity measures as edge features in a customised Graph Neural Network (GNN) layer, effectively leveraging the topological information of large networks. This model represents the first parameterised GNN-based link prediction model that considers topological information. The proposed model was evaluated on five benchmark graph datasets, each comprising thousands of nodes and edges. Experimental results highlight NCSM's superiority over existing state-of-the-art models like Graph Convolutional Networks and Variational Graph Autoencoder, as it outperforms them across various metrics and datasets. This exceptional performance can be attributed to NCSM's innovative integration of node centrality, similarity measures, and its efficient use of topological information.