Abstract:Link prediction is a key aspect of graph machine learning, with applications as diverse as disease prediction, social network recommendations, and drug discovery. It involves predicting new links that may form between network nodes. Despite the clear importance of link prediction, existing models have significant shortcomings. Graph Convolutional Networks, for instance, have been proven to be highly efficient for link prediction on a variety of datasets. However, they encounter severe limitations when applied to short-path networks and ego networks, resulting in poor performance. This presents a critical problem space that this work aims to address. In this paper, we present the Node Centrality and Similarity Based Parameterised Model (NCSM), a novel method for link prediction tasks. NCSM uniquely integrates node centrality and similarity measures as edge features in a customised Graph Neural Network (GNN) layer, effectively leveraging the topological information of large networks. This model represents the first parameterised GNN-based link prediction model that considers topological information. The proposed model was evaluated on five benchmark graph datasets, each comprising thousands of nodes and edges. Experimental results highlight NCSM's superiority over existing state-of-the-art models like Graph Convolutional Networks and Variational Graph Autoencoder, as it outperforms them across various metrics and datasets. This exceptional performance can be attributed to NCSM's innovative integration of node centrality, similarity measures, and its efficient use of topological information.
Abstract:In this paper have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification. This solves problems that arise when traditional dilated convolutional neural network (CNN) models disregard the correlation between contexts and gradient dispersion. The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features. As a result of incorporating both local and global feature information and an attention mechanism, the model's performance for prediction is improved.By combining the fusion features with a dilated CNN and a hierarchical attention mechanism, the trained HARDC model showed significantly improved classification results and interpretability of feature extraction on the PhysioNet 2017 challenge dataset. Sequential Z-Score normalization, filtering, denoising, and segmentation are used to prepare the raw data for analysis. CGAN (Conditional Generative Adversarial Network) is then used to generate synthetic signals from the processed data. The experimental results demonstrate that the proposed HARDC model significantly outperforms other existing models, achieving an accuracy of 99.60\%, F1 score of 98.21\%, a precision of 97.66\%, and recall of 99.60\% using MIT-BIH generated ECG. In addition, this approach substantially reduces run time when using dilated CNN compared to normal convolution. Overall, this hybrid model demonstrates an innovative and cost-effective strategy for ECG signal compression and high-performance ECG recognition. Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
Abstract:Introduction: For COVID-19 patients accurate prediction of disease severity and mortality risk would greatly improve care delivery and resource allocation. There are many patient-related factors, such as pre-existing comorbidities that affect disease severity. Since rapid automated profiling of peripheral blood samples is widely available, we investigated how such data from the peripheral blood of COVID-19 patients might be used to predict clinical outcomes. Methods: We thus investigated such clinical datasets from COVID-19 patients with known outcomes by combining statistical comparison and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient boosting machine, support vector machine, K-nearest neighbour and deep learning methods. Results: Our work revealed several clinical parameters measurable in blood samples, which discriminated between healthy people and COVID-19 positive patients and showed predictive value for later severity of COVID-19 symptoms. We thus developed a number of analytic methods that showed accuracy and precision for disease severity and mortality outcome predictions that were above 90%. Conclusions: In sum, we developed methodologies to analyse patient routine clinical data which enables more accurate prediction of COVID-19 patient outcomes. This type of approaches could, by employing standard hospital laboratory analyses of patient blood, be utilised to identify, COVID-19 patients at high risk of mortality and so enable their treatment to be optimised.