Abstract:Introduction: For COVID-19 patients accurate prediction of disease severity and mortality risk would greatly improve care delivery and resource allocation. There are many patient-related factors, such as pre-existing comorbidities that affect disease severity. Since rapid automated profiling of peripheral blood samples is widely available, we investigated how such data from the peripheral blood of COVID-19 patients might be used to predict clinical outcomes. Methods: We thus investigated such clinical datasets from COVID-19 patients with known outcomes by combining statistical comparison and correlation methods with machine learning algorithms; the latter included decision tree, random forest, variants of gradient boosting machine, support vector machine, K-nearest neighbour and deep learning methods. Results: Our work revealed several clinical parameters measurable in blood samples, which discriminated between healthy people and COVID-19 positive patients and showed predictive value for later severity of COVID-19 symptoms. We thus developed a number of analytic methods that showed accuracy and precision for disease severity and mortality outcome predictions that were above 90%. Conclusions: In sum, we developed methodologies to analyse patient routine clinical data which enables more accurate prediction of COVID-19 patient outcomes. This type of approaches could, by employing standard hospital laboratory analyses of patient blood, be utilised to identify, COVID-19 patients at high risk of mortality and so enable their treatment to be optimised.
Abstract:Background: Providing appropriate care for people suffering from COVID-19, the disease caused by the pandemic SARS-CoV-2 virus is a significant global challenge. Many individuals who become infected have pre-existing conditions that may interact with COVID-19 to increase symptom severity and mortality risk. COVID-19 patient comorbidities are likely to be informative about individual risk of severe illness and mortality. Accurately determining how comorbidities are associated with severe symptoms and mortality would thus greatly assist in COVID-19 care planning and provision. Methods: To assess the interaction of patient comorbidities with COVID-19 severity and mortality we performed a meta-analysis of the published global literature, and machine learning predictive analysis using an aggregated COVID-19 global dataset. Results: Our meta-analysis identified chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CEVD), cardiovascular disease (CVD), type 2 diabetes, malignancy, and hypertension as most significantly associated with COVID-19 severity in the current published literature. Machine learning classification using novel aggregated cohort data similarly found COPD, CVD, CKD, type 2 diabetes, malignancy and hypertension, as well as asthma, as the most significant features for classifying those deceased versus those who survived COVID-19. While age and gender were the most significant predictor of mortality, in terms of symptom-comorbidity combinations, it was observed that Pneumonia-Hypertension, Pneumonia-Diabetes and Acute Respiratory Distress Syndrome (ARDS)-Hypertension showed the most significant effects on COVID-19 mortality. Conclusions: These results highlight patient cohorts most at risk of COVID-19 related severe morbidity and mortality which have implications for prioritization of hospital resources.