Abstract:Lithology discrimination is a crucial activity in characterizing oil reservoirs, and processing lithology microscopic images is an essential technique for investigating fossils and minerals and geological assessment of shale oil exploration. In this way, Deep Learning (DL) technique is a powerful approach for building robust classifier models. However, there is still a considerable challenge to collect and produce a large dataset. Transfer-learning and data augmentation techniques have emerged as popular approaches to tackle this problem. Furthermore, due to different reasons, especially data privacy, individuals, organizations, and industry companies often are not willing to share their sensitive data and information. Federated Learning (FL) has emerged to train a highly accurate central model across multiple decentralized edge servers without transferring sensitive data, preserving sensitive data, and enhancing security. This study involves two phases; the first phase is to conduct Lithology microscopic image classification on a small dataset using transfer learning. In doing so, various pre-trained DL model architectures are comprehensively compared for the classification task. In the second phase, we formulated the classification task to a Federated Transfer Learning (FTL) scheme and proposed a Fine-Tuned Aggregation strategy for Federated Learning (FTA-FTL). In order to perform a comprehensive experimental study, several metrics such as accuracy, f1 score, precision, specificity, sensitivity (recall), and confusion matrix are taken into account. The results are in excellent agreement and confirm the efficiency of the proposed scheme, and show that the proposed FTA-FTL algorithm is capable enough to achieve approximately the same results obtained by the centralized implementation for Lithology microscopic images classification task.
Abstract:Batch effects in omics data obscure true biological signals and constitute a major challenge for privacy-preserving analyses of distributed patient data. Existing batch effect correction methods either require data centralization, which may easily conflict with privacy requirements, or lack support for missing values and automated workflows. To bridge this gap, we developed fedRBE, a federated implementation of limma's removeBatchEffect method. We implemented it as an app for the FeatureCloud platform. Unlike its existing analogs, fedRBE effectively handles data with missing values and offers an automated, user-friendly online user interface (https://featurecloud.ai/app/fedrbe). Leveraging secure multi-party computation provides enhanced security guarantees over classical federated learning approaches. We evaluated our fedRBE algorithm on simulated and real omics data, achieving performance comparable to the centralized method with negligible differences (no greater than 3.6E-13). By enabling collaborative correction without data sharing, fedRBE facilitates large-scale omics studies where batch effect correction is crucial.