What is Traffic Prediction? Traffic prediction is the process of forecasting traffic conditions, such as congestion and travel times, using historical traffic data.
Papers and Code
Dec 30, 2024
Abstract:Understanding the traffic dynamics in networks is a core capability for automated systems to monitor and analyze networking behaviors, reducing expensive human efforts and economic risks through tasks such as traffic classification, congestion prediction, and attack detection. However, it is still challenging to accurately model network traffic with machine learning approaches in an efficient and broadly applicable manner. Task-specific models trained from scratch are used for different networking applications, which limits the efficiency of model development and generalization of model deployment. Furthermore, while networking data is abundant, high-quality task-specific labels are often insufficient for training individual models. Large-scale self-supervised learning on unlabeled data provides a natural pathway for tackling these challenges. We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records, with the goal of fine-tuning for different downstream tasks with small amount of labels. Our presented NetFlowGen framework goes beyond a proof-of-concept for network traffic pre-training and addresses specific challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection. Experiments demonstrate promising results of our pre-training framework on capturing traffic dynamics and adapting to different networking tasks.
Via
Dec 23, 2024
Abstract:Accurate traffic prediction, especially predicting traffic conditions several days in advance is essential for intelligent transportation systems (ITS). Such predictions enable mid- and long-term traffic optimization, which is crucial for efficient transportation planning. However, the inclusion of diverse external features, alongside the complexities of spatial relationships and temporal uncertainties, significantly increases the complexity of forecasting models. Additionally, traditional approaches have handled data preprocessing separately from the learning model, leading to inefficiencies caused by repeated trials of preprocessing and training. In this study, we propose a federated architecture capable of learning directly from raw data with varying features and time granularities or lengths. The model adopts a unified design that accommodates different feature types, time scales, and temporal periods. Our experiments focus on federating route search records and begin by processing raw data within the model framework. Unlike traditional models, this approach integrates the data federation phase into the learning process, enabling compatibility with various time frequencies and input/output configurations. The accuracy of the proposed model is demonstrated through evaluations using diverse learning patterns and parameter settings. The results show that online search log data is useful for forecasting long-term traffic, highlighting the model's adaptability and efficiency.
* Accepted by IEEE BigData 2024
Via
Dec 24, 2024
Abstract:Traffic flow prediction plays a crucial role in the management and operation of urban transportation systems. While extensive research has been conducted on predictions for individual transportation modes, there is relatively limited research on joint prediction across different transportation modes. Furthermore, existing multimodal traffic joint modeling methods often lack flexibility in spatial-temporal feature extraction. To address these issues, we propose a method called Graph Sparse Attention Mechanism with Bidirectional Temporal Convolutional Network (GSABT) for multimodal traffic spatial-temporal joint prediction. First, we use a multimodal graph multiplied by self-attention weights to capture spatial local features, and then employ the Top-U sparse attention mechanism to obtain spatial global features. Second, we utilize a bidirectional temporal convolutional network to enhance the temporal feature correlation between the output and input data, and extract inter-modal and intra-modal temporal features through the share-unique module. Finally, we have designed a multimodal joint prediction framework that can be flexibly extended to both spatial and temporal dimensions. Extensive experiments conducted on three real datasets indicate that the proposed model consistently achieves state-of-the-art predictive performance.
Via
Dec 23, 2024
Abstract:Traffic flow prediction plays a critical role in the intelligent transportation system, and it is also a challenging task because of the underlying complex Spatio-temporal patterns and heterogeneities evolving across time. However, most present works mostly concentrate on solely capturing Spatial-temporal dependency or extracting implicit similarity graphs, but the hybrid-granularity evolution is ignored in their modeling process. In this paper, we proposed a novel data-driven end-to-end framework, named Spatio-Temporal Aware Hybrid Graph Network (STAHGNet), to couple the hybrid-grained heterogeneous correlations in series simultaneously through an elaborately Hybrid Graph Attention Module (HGAT) and Coarse-granularity Temporal Graph (CTG) generator. Furthermore, an automotive feature engineering with domain knowledge and a random neighbor sampling strategy is utilized to improve efficiency and reduce computational complexity. The MAE, RMSE, and MAPE are used for evaluation metrics. Tested on four real-life datasets, our proposal outperforms eight classical baselines and four state-of-the-art (SOTA) methods (e.g., MAE 14.82 on PeMSD3; MAE 18.92 on PeMSD4). Besides, extensive experiments and visualizations verify the effectiveness of each component in STAHGNet. In terms of computational cost, STAHGNet saves at least four times the space compared to the previous SOTA models. The proposed model will be beneficial for more efficient TFP as well as intelligent transport system construction.
* Accepted by Neural Computing and Applications
Via
Dec 24, 2024
Abstract:The extraction of spatial-temporal features is a crucial research in transportation studies, and current studies typically use a unified temporal modeling mechanism and fixed spatial graph for this purpose. However, the fixed spatial graph restricts the extraction of spatial features for similar but not directly connected nodes, while the unified temporal modeling mechanism overlooks the heterogeneity of temporal variation of different nodes. To address these challenges, a multi-view fusion neural network (MVFN) approach is proposed. In this approach, spatial local features are extracted through the use of a graph convolutional network (GCN), and spatial global features are extracted using a cosine re-weighting linear attention mechanism (CLA). The GCN and CLA are combined to create a graph-cosine module (GCM) for the extraction of overall spatial features. Additionally, the multi-channel separable temporal convolutional network (MSTCN) makes use of a multi-channel temporal convolutional network (MTCN) at each layer to extract unified temporal features, and a separable temporal convolutional network (STCN) to extract independent temporal features. Finally, the spatial-temporal feature data is input into the prediction layer to obtain the final result. The model has been validated on two traffic demand datasets and achieved the best prediction accuracy.
Via
Dec 23, 2024
Abstract:Cellular traffic forecasting is a critical task that enables network operators to efficiently allocate resources and address anomalies in rapidly evolving environments. The exponential growth of data collected from base stations poses significant challenges to processing and analysis. While machine learning (ML) algorithms have emerged as powerful tools for handling these large datasets and providing accurate predictions, their environmental impact, particularly in terms of energy consumption, is often overlooked in favor of their predictive capabilities. This study investigates the potential of two bio-inspired models: Spiking Neural Networks (SNNs) and Reservoir Computing through Echo State Networks (ESNs) for cellular traffic forecasting. The evaluation focuses on both their predictive performance and energy efficiency. These models are implemented in both centralized and federated settings to analyze their effectiveness and energy consumption in decentralized systems. Additionally, we compare bio-inspired models with traditional architectures, such as Convolutional Neural Networks (CNNs) and Multi-Layer Perceptrons (MLPs), to provide a comprehensive evaluation. Using data collected from three diverse locations in Barcelona, Spain, we examine the trade-offs between predictive accuracy and energy demands across these approaches. The results indicate that bio-inspired models, such as SNNs and ESNs, can achieve significant energy savings while maintaining predictive accuracy comparable to traditional architectures. Furthermore, federated implementations were tested to evaluate their energy efficiency in decentralized settings compared to centralized systems, particularly in combination with bio-inspired models. These findings offer valuable insights into the potential of bio-inspired models for sustainable and privacy-preserving cellular traffic forecasting.
* 18 pages, 8 figures
Via
Dec 27, 2024
Abstract:Multimodal large language models (MLLMs) have shown satisfactory effects in many autonomous driving tasks. In this paper, MLLMs are utilized to solve joint semantic scene understanding and risk localization tasks, while only relying on front-view images. In the proposed MLLM-SUL framework, a dual-branch visual encoder is first designed to extract features from two resolutions, and rich visual information is conducive to the language model describing risk objects of different sizes accurately. Then for the language generation, LLaMA model is fine-tuned to predict scene descriptions, containing the type of driving scenario, actions of risk objects, and driving intentions and suggestions of ego-vehicle. Ultimately, a transformer-based network incorporating a regression token is trained to locate the risk objects. Extensive experiments on the existing DRAMA-ROLISP dataset and the extended DRAMA-SRIS dataset demonstrate that our method is efficient, surpassing many state-of-the-art image-based and video-based methods. Specifically, our method achieves 80.1% BLEU-1 score and 298.5% CIDEr score in the scene understanding task, and 59.6% accuracy in the localization task. Codes and datasets are available at https://github.com/fjq-tongji/MLLM-SUL.
Via
Dec 19, 2024
Abstract:Traffic prediction is an indispensable component of urban planning and traffic management. Achieving accurate traffic prediction hinges on the ability to capture the potential spatio-temporal relationships among road sensors. However, the majority of existing works focus on local short-term spatio-temporal correlations, failing to fully consider the interactions of different sensors in the long-term state. In addition, these works do not analyze the influences of anomalous factors, or have insufficient ability to extract personalized features of anomalous factors, which make them ineffectively capture their spatio-temporal influences on traffic prediction. To address the aforementioned issues, We propose a global spatio-temporal fusion-based traffic prediction algorithm that incorporates anomaly awareness. Initially, based on the designed anomaly detection network, we construct an efficient anomalous factors impacting module (AFIM), to evaluate the spatio-temporal impact of unexpected external events on traffic prediction. Furthermore, we propose a multi-scale spatio-temporal feature fusion module (MTSFFL) based on the transformer architecture, to obtain all possible both long and short term correlations among different sensors in a wide-area traffic environment for accurate prediction of traffic flow. Finally, experiments are implemented based on real-scenario public transportation datasets (PEMS04 and PEMS08) to demonstrate that our approach can achieve state-of-the-art performance.
Via
Dec 23, 2024
Abstract:Safety-critical traffic scenarios are of great practical relevance to evaluating the robustness of autonomous driving (AD) systems. Given that these long-tail events are extremely rare in real-world traffic data, there is a growing body of work dedicated to the automatic traffic scenario generation. However, nearly all existing algorithms for generating safety-critical scenarios rely on snippets of previously recorded traffic events, transforming normal traffic flow into accident-prone situations directly. In other words, safety-critical traffic scenario generation is hindsight and not applicable to newly encountered and open-ended traffic events.In this paper, we propose the Deep Motion Factorization (DeepMF) framework, which extends static safety-critical driving scenario generation to closed-loop and interactive adversarial traffic simulation. DeepMF casts safety-critical traffic simulation as a Bayesian factorization that includes the assignment of hazardous traffic participants, the motion prediction of selected opponents, the reaction estimation of autonomous vehicle (AV) and the probability estimation of the accident occur. All the aforementioned terms are calculated using decoupled deep neural networks, with inputs limited to the current observation and historical states. Consequently, DeepMF can effectively and efficiently simulate safety-critical traffic scenarios at any triggered time and for any duration by maximizing the compounded posterior probability of traffic risk. Extensive experiments demonstrate that DeepMF excels in terms of risk management, flexibility, and diversity, showcasing outstanding performance in simulating a wide range of realistic, high-risk traffic scenarios.
Via
Dec 25, 2024
Abstract:Most autonomous driving (AD) datasets incur substantial costs for collection and labeling, inevitably yielding a plethora of low-quality and redundant data instances, thereby compromising performance and efficiency. Many applications in AD systems necessitate high-quality training datasets using both existing datasets and newly collected data. In this paper, we propose a traffic scene joint active learning (TSceneJAL) framework that can efficiently sample the balanced, diverse, and complex traffic scenes from both labeled and unlabeled data. The novelty of this framework is threefold: 1) a scene sampling scheme based on a category entropy, to identify scenes containing multiple object classes, thus mitigating class imbalance for the active learner; 2) a similarity sampling scheme, estimated through the directed graph representation and a marginalize kernel algorithm, to pick sparse and diverse scenes; 3) an uncertainty sampling scheme, predicted by a mixture density network, to select instances with the most unclear or complex regression outcomes for the learner. Finally, the integration of these three schemes in a joint selection strategy yields an optimal and valuable subdataset. Experiments on the KITTI, Lyft, nuScenes and SUScape datasets demonstrate that our approach outperforms existing state-of-the-art methods on 3D object detection tasks with up to 12% improvements.
Via