Abstract:The implementation of Autonomous Driving (AD) technologies within urban environments presents significant challenges. These challenges necessitate the development of advanced perception systems and motion planning algorithms capable of managing situations of considerable complexity. Although the end-to-end AD method utilizing LiDAR sensors has achieved significant success in this scenario, we argue that its drawbacks may hinder its practical application. Instead, we propose the vision-centric AD as a promising alternative offering a streamlined model without compromising performance. In this study, we present a path planning method that utilizes 2D bounding boxes of objects, developed through imitation learning in urban driving scenarios. This is achieved by integrating high-definition (HD) map data with images captured by surrounding cameras. Subsequent perception tasks involve bounding-box detection and tracking, while the planning phase employs both local embeddings via Graph Neural Network (GNN) and global embeddings via Transformer for temporal-spatial feature aggregation, ultimately producing optimal path planning information. We evaluated our model on the nuPlan planning task and observed that it performs competitively in comparison to existing vision-centric methods.
Abstract:Vehicle perception systems strive to achieve comprehensive and rapid visual interpretation of their surroundings for improved safety and navigation. We introduce YOLO-BEV, an efficient framework that harnesses a unique surrounding cameras setup to generate a 2D bird's-eye view of the vehicular environment. By strategically positioning eight cameras, each at a 45-degree interval, our system captures and integrates imagery into a coherent 3x3 grid format, leaving the center blank, providing an enriched spatial representation that facilitates efficient processing. In our approach, we employ YOLO's detection mechanism, favoring its inherent advantages of swift response and compact model structure. Instead of leveraging the conventional YOLO detection head, we augment it with a custom-designed detection head, translating the panoramically captured data into a unified bird's-eye view map of ego car. Preliminary results validate the feasibility of YOLO-BEV in real-time vehicular perception tasks. With its streamlined architecture and potential for rapid deployment due to minimized parameters, YOLO-BEV poses as a promising tool that may reshape future perspectives in autonomous driving systems.