Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
Traffic prediction in data-scarce, cross-city settings is challenging due to complex nonlinear dynamics and domain shifts. Existing methods often fail to capture traffic's inherent chaotic nature for effective few-shot learning. We propose CAST-CKT, a novel Chaos-Aware Spatio-Temporal and Cross-City Knowledge Transfer framework. It employs an efficient chaotic analyser to quantify traffic predictability regimes, driving several key innovations: chaos-aware attention for regime-adaptive temporal modelling; adaptive topology learning for dynamic spatial dependencies; and chaotic consistency-based cross-city alignment for knowledge transfer. The framework also provides horizon-specific predictions with uncertainty quantification. Theoretical analysis shows improved generalisation bounds. Extensive experiments on four benchmarks in cross-city few-shot settings show CAST-CKT outperforms state-of-the-art methods by significant margins in MAE and RMSE, while offering interpretable regime analysis. Code is available at https://github.com/afofanah/CAST-CKT.
Early and accurate diagnosis of Alzheimer's disease (AD) remains a critical challenge in neuroimaging-based clinical decision support systems. In this work, we propose a novel hybrid deep learning framework that integrates Topological Data Analysis (TDA) with a DenseNet121 backbone for four-class Alzheimer's disease classification using structural MRI data from the OASIS dataset. TDA is employed to capture complementary topological characteristics of brain structures that are often overlooked by conventional neural networks, while DenseNet121 efficiently learns hierarchical spatial features from MRI slices. The extracted deep and topological features are fused to enhance class separability across the four AD stages. Extensive experiments conducted on the OASIS-1 Kaggle MRI dataset demonstrate that the proposed TDA+DenseNet121 model significantly outperforms existing state-of-the-art approaches. The model achieves an accuracy of 99.93% and an AUC of 100%, surpassing recently published CNN-based, transfer learning, ensemble, and multi-scale architectures. These results confirm the effectiveness of incorporating topological insights into deep learning pipelines and highlight the potential of the proposed framework as a robust and highly accurate tool for automated Alzheimer's disease diagnosis.
While Mixture-of-Experts (MoE) architectures define the state-of-the-art, their theoretical success is often attributed to heuristic efficiency rather than geometric expressivity. In this work, we present the first analysis of MoE through the lens of tropical geometry, establishing that the Top-$k$ routing mechanism is algebraically isomorphic to the $k$-th elementary symmetric tropical polynomial. This isomorphism partitions the input space into the Normal Fan of a Hypersimplex, revealing that \textbf{sparsity is combinatorial depth} which scales geometric capacity by the binomial coefficient $\binom{N}{k}$. Moving beyond ambient bounds, we introduce the concept of \textit{Effective Capacity} under the Manifold Hypothesis. We prove that while dense networks suffer from capacity collapse on low-dimensional data, MoE architectures exhibit \textit{Combinatorial Resilience}, maintaining high expressivity via the transversality of routing cones. In this study, our framework unifies the discrete geometry of the Hypersimplex with the continuous geometry of neural functions, offering a rigorous theoretical justification for the topological supremacy of conditional computation.
Pulmonary trees extracted from CT images frequently exhibit topological incompleteness, such as missing or disconnected branches, which substantially degrades downstream anatomical analysis and limits the applicability of existing pulmonary tree modeling pipelines. Current approaches typically rely on dense volumetric processing or explicit graph reasoning, leading to limited efficiency and reduced robustness under realistic structural corruption. We propose TopoField, a topology-aware implicit modeling framework that treats topology repair as a first-class modeling problem and enables unified multi-task inference for pulmonary tree analysis. TopoField represents pulmonary anatomy using sparse surface and skeleton point clouds and learns a continuous implicit field that supports topology repair without relying on complete or explicit disconnection annotations, by training on synthetically introduced structural disruptions over \textit{already} incomplete trees. Building upon the repaired implicit representation, anatomical labeling and lung segment reconstruction are jointly inferred through task-specific implicit functions within a single forward pass.Extensive experiments on the Lung3D+ dataset demonstrate that TopoField consistently improves topological completeness and achieves accurate anatomical labeling and lung segment reconstruction under challenging incomplete scenarios. Owing to its implicit formulation, TopoField attains high computational efficiency, completing all tasks in just over one second per case, highlighting its practicality for large-scale and time-sensitive clinical applications. Code and data will be available at https://github.com/HINTLab/TopoField.
Combinatorial and topological structures, such as graphs, simplicial complexes, and cell complexes, form the foundation of geometric and topological deep learning (GDL and TDL) architectures. These models aggregate signals over such domains, integrate local features, and generate representations for diverse real-world applications. However, the distribution and diffusion behavior of GDL and TDL features during training remains an open and underexplored problem. Motivated by this gap, we introduce a cellular sheaf theoretic framework for modeling and analyzing the local consistency and harmonicity of node features and edge weights in graph-based architectures. By tracking local feature alignments and agreements through sheaf structures, the framework offers a topological perspective on feature diffusion and aggregation. Furthermore, a multiscale extension inspired by topological data analysis (TDA) is proposed to capture hierarchical feature interactions in graph models. This approach enables a joint characterization of GDL and TDL architectures based on their underlying geometric and topological structures and the learned signals defined on them, providing insights for future studies on conventional tasks such as node classification, substructure detection, and community detection.
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
Illicit financial activities such as money laundering often manifest through recurrent topological patterns in transaction networks. Detecting these patterns automatically remains challenging due to the scarcity of labeled real-world data and strict privacy constraints. To address this, we investigate whether Graph Autoencoders (GAEs) can effectively learn and distinguish topological patterns that mimic money laundering operations when trained on synthetic data. The analysis consists of two phases: (i) data generation, where synthetic samples are created for seven well-known illicit activity patterns using parametrized generators that preserve structural consistency while introducing realistic variability; and (ii) model training and validation, where separate GAEs are trained on each pattern without explicit labels, relying solely on reconstruction error as an indicator of learned structure. We compare three GAE implementations based on three distinct convolutional layers: Graph Convolutional (GAE-GCN), GraphSAGE (GAE-SAGE), and Graph Attention Network (GAE-GAT). Experimental results show that GAE-GCN achieves the most consistent reconstruction performance across patterns, while GAE-SAGE and GAE-GAT exhibit competitive results only in few specific patterns. These findings suggest that graph-based representation learning on synthetic data provides a viable path toward developing AI-driven tools for detecting illicit behaviors, overcoming the limitations of financial datasets.
Multimodal evidence is critical in computational pathology: gigapixel whole slide images capture tumor morphology, while patient-level clinical descriptors preserve complementary context for prognosis. Integrating such heterogeneous signals remains challenging because feature spaces exhibit distinct statistics and scales. We introduce MMSF, a multitask and multimodal supervised framework built on a linear-complexity MIL backbone that explicitly decomposes and fuses cross-modal information. MMSF comprises a graph feature extraction module embedding tissue topology at the patch level, a clinical data embedding module standardizing patient attributes, a feature fusion module aligning modality-shared and modality-specific representations, and a Mamba-based MIL encoder with multitask prediction heads. Experiments on CAMELYON16 and TCGA-NSCLC demonstrate 2.1--6.6\% accuracy and 2.2--6.9\% AUC improvements over competitive baselines, while evaluations on five TCGA survival cohorts yield 7.1--9.8\% C-index improvements compared with unimodal methods and 5.6--7.1\% over multimodal alternatives.
Genetic mutations frequently disrupt protein structure, stability, and solubility, acting as primary drivers for a wide spectrum of diseases. Despite the critical importance of these molecular alterations, existing computational models often lack interpretability, and fail to integrate essential physicochemical interaction. To overcome these limitations, we propose SheafLapNet, a unified predictive framework grounded in the mathematical theory of Topological Deep Learning (TDL) and Persistent Sheaf Laplacian (PSL). Unlike standard Topological Data Analysis (TDA) tools such as persistent homology, which are often insensitive to heterogeneous information, PSL explicitly encodes specific physical and chemical information such as partial charges directly into the topological analysis. SheafLapNet synergizes these sheaf-theoretic invariants with advanced protein transformer features and auxiliary physical descriptors to capture intrinsic molecular interactions in a multiscale and mechanistic manner. To validate our framework, we employ rigorous benchmarks for both regression and classification tasks. For stability prediction, we utilize the comprehensive S2648 and S350 datasets. For solubility prediction, we employ the PON-Sol2 dataset, which provides annotations for increased, decreased, or neutral solubility changes. By integrating these multi-perspective features, SheafLapNet achieves state-of-the-art performance across these diverse benchmarks, demonstrating that sheaf-theoretic modeling significantly enhances both interpretability and generalizability in predicting mutation-induced structural and functional changes.