Abstract:Deep-learning models have been successful in biomedical image segmentation. To generalize for real-world deployment, test-time augmentation (TTA) methods are often used to transform the test image into different versions that are hopefully closer to the training domain. Unfortunately, due to the vast diversity of instance scale and image styles, many augmented test images produce undesirable results, thus lowering the overall performance. This work proposes a new TTA framework, S$^3$-TTA, which selects the suitable image scale and style for each test image based on a transformation consistency metric. In addition, S$^3$-TTA constructs an end-to-end augmentation-segmentation joint-training pipeline to ensure a task-oriented augmentation. On public benchmarks for cell and lung segmentation, S$^3$-TTA demonstrates improvements over the prior art by 3.4% and 1.3%, respectively, by simply augmenting the input data in testing phase.
Abstract:Pulmonary diseases rank prominently among the principal causes of death worldwide. Curing them will require, among other things, a better understanding of the many complex 3D tree-shaped structures within the pulmonary system, such as airways, arteries, and veins. In theory, they can be modeled using high-resolution image stacks. Unfortunately, standard CNN approaches operating on dense voxel grids are prohibitively expensive. To remedy this, we introduce a point-based approach that preserves graph connectivity of tree skeleton and incorporates an implicit surface representation. It delivers SOTA accuracy at a low computational cost and the resulting models have usable surfaces. Due to the scarcity of publicly accessible data, we have also curated an extensive dataset to evaluate our approach and will make it public.