This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
Graph neural networks (GNNs) are increasingly adopted in industrial graph-based monitoring systems (e.g., Industrial internet of things (IIoT) device graphs, power-grid topology models, and manufacturing communication networks) to support anomaly detection, state estimation, and asset classification. In such settings, an adversary that compromises a small number of edge devices may inject counterfeit nodes (e.g., rogue sensors, virtualized endpoints, or spoofed substations) to bias downstream decisions while evading topology- and homophily-based sanitization. This paper formulates deployment-oriented node-injection attacks under constrained resources and proposes the \emph{Single-Edge Graph Injection Attack} (SEGIA), in which each injected node attaches to the operational graph through a single edge. SEGIA integrates a pruned SGC surrogate, multi-hop neighborhood sampling, and reverse graph convolution-based feature synthesis with a similarity-regularized objective to preserve local homophily and survive edge pruning. Theoretical analysis and extensive evaluations across datasets and defenses show at least $25\%$ higher attack success than representative baselines under substantially smaller edge budgets. These results indicate a system-level risk in industrial GNN deployments and motivate lightweight admission validation and neighborhood-consistency monitoring.
A large number of works view the automatic assessment of speech from an utterance- or system-level perspective. While such approaches are good in judging overall quality, they cannot adequately explain why a certain score was assigned to an utterance. frame-level scores can provide better interpretability, but models predicting them are harder to tune and regularize since no strong targets are available during training. In this work, we show that utterance-level speech quality predictors can be regularized with a segment-based consistency constraint which notably reduces frame-level stochasticity. We then demonstrate two applications involving frame-level scores: The partial spoof scenario and the detection of synthesis artefacts in two state-of-the-art text-to-speech systems. For the latter, we perform listening tests and confirm that listeners rate segments to be of poor quality more often in the set defined by low frame-level scores than in a random control set.
This paper describes the UZH-CL system submitted to the SASV section of the WildSpoof 2026 challenge. The challenge focuses on the integrated defense against generative spoofing attacks by requiring the simultaneous verification of speaker identity and audio authenticity. We proposed a cascaded Spoofing-Aware Speaker Verification framework that integrates a Wavelet Prompt-Tuned XLSR-AASIST countermeasure with a multi-model ensemble. The ASV component utilizes the ResNet34, ResNet293, and WavLM-ECAPA-TDNN architectures, with Z-score normalization followed by score averaging. Trained on VoxCeleb2 and SpoofCeleb, the system obtained a Macro a-DCF of 0.2017 and a SASV EER of 2.08%. While the system achieved a 0.16% EER in spoof detection on the in-domain data, results on unseen datasets, such as the ASVspoof5, highlight the critical challenge of cross-domain generalization.
In speech machine learning, neural network models are typically designed by choosing an architecture with fixed layer sizes and structure. These models are then trained to maximize performance on metrics aligned with the task's objective. While the overall architecture is usually guided by prior knowledge of the task, the sizes of individual layers are often chosen heuristically. However, this approach does not guarantee an optimal trade-off between performance and computational complexity; consequently, post hoc methods such as weight quantization or model pruning are typically employed to reduce computational cost. This occurs because stochastic gradient descent (SGD) methods can only optimize differentiable functions, while factors influencing computational complexity, such as layer sizes and floating-point operations per second (FLOP/s), are non-differentiable and require modifying the model structure during training. We propose a reparameterization technique based on feature noise injection that enables joint optimization of performance and computational complexity during training using SGD-based methods. Unlike traditional pruning methods, our approach allows the model size to be dynamically optimized for a target performance-complexity trade-off, without relying on heuristic criteria to select which weights or structures to remove. We demonstrate the effectiveness of our method through three case studies, including a synthetic example and two practical real-world applications: voice activity detection and audio anti-spoofing. The code related to our work is publicly available to encourage further research.
ASVspoof 5 is the fifth edition in a series of challenges which promote the study of speech spoofing and deepfake detection solutions. A significant change from previous challenge editions is a new crowdsourced database collected from a substantially greater number of speakers under diverse recording conditions, and a mix of cutting-edge and legacy generative speech technology. With the new database described elsewhere, we provide in this paper an overview of the ASVspoof 5 challenge results for the submissions of 53 participating teams. While many solutions perform well, performance degrades under adversarial attacks and the application of neural encoding/compression schemes. Together with a review of post-challenge results, we also report a study of calibration in addition to other principal challenges and outline a road-map for the future of ASVspoof.
Audio deepfake detection has become increasingly challenging due to rapid advances in speech synthesis and voice conversion technologies, particularly under channel distortions, replay attacks, and real-world recording conditions. This paper proposes a resolution-aware audio deepfake detection framework that explicitly models and aligns multi-resolution spectral representations through cross-scale attention and consistency learning. Unlike conventional single-resolution or implicit feature-fusion approaches, the proposed method enforces agreement across complementary time--frequency scales. The proposed framework is evaluated on three representative benchmarks: ASVspoof 2019 (LA and PA), the Fake-or-Real (FoR) dataset, and the In-the-Wild Audio Deepfake dataset under a speaker-disjoint protocol. The method achieves near-perfect performance on ASVspoof LA (EER 0.16%), strong robustness on ASVspoof PA (EER 5.09%), FoR rerecorded audio (EER 4.54%), and in-the-wild deepfakes (AUC 0.98, EER 4.81%), significantly outperforming single-resolution and non-attention baselines under challenging conditions. The proposed model remains lightweight and efficient, requiring only 159k parameters and less than 1~GFLOP per inference, making it suitable for practical deployment. Comprehensive ablation studies confirm the critical contributions of cross-scale attention and consistency learning, while gradient-based interpretability analysis reveals that the model learns resolution-consistent and semantically meaningful spectral cues across diverse spoofing conditions. These results demonstrate that explicit cross-resolution modeling provides a principled, robust, and scalable foundation for next-generation audio deepfake detection systems.
Protecting the copyright of user-generated AI images is an emerging challenge as AIGC becomes pervasive in creative workflows. Existing watermarking methods (1) remain vulnerable to real-world adversarial threats, often forced to trade off between defenses against spoofing and removal attacks; and (2) cannot support semantic-level tamper localization. We introduce PAI, a training-free inherent watermarking framework for AIGC copyright protection, plug-and-play with diffusion-based AIGC services. PAI simultaneously provides three key functionalities: robust ownership verification, attack detection, and semantic-level tampering localization. Unlike existing inherent watermark methods that only embed watermarks at noise initialization of diffusion models, we design a novel key-conditioned deflection mechanism that subtly steers the denoising trajectory according to the user key. Such trajectory-level coupling further strengthens the semantic entanglement of identity and content, thereby further enhancing robustness against real-world threats. Moreover, we also provide a theoretical analysis proving that only the valid key can pass verification. Experiments across 12 attack methods show that PAI achieves 98.43\% verification accuracy, improving over SOTA methods by 37.25\% on average, and retains strong tampering localization performance even against advanced AIGC edits. Our code is available at https://github.com/QingyuLiu/PAI.
Advanced speech synthesis technologies have enabled highly realistic speech generation, posing security risks that motivate research into audio deepfake detection (ADD). While state space models (SSMs) offer linear complexity, pure causal SSMs architectures often struggle with the content-based retrieval required to capture global frequency-domain artifacts. To address this, we explore the scaling properties of hybrid architectures by proposing XLSR-MamBo, a modular framework integrating an XLSR front-end with synergistic Mamba-Attention backbones. We systematically evaluate four topological designs using advanced SSM variants, Mamba, Mamba2, Hydra, and Gated DeltaNet. Experimental results demonstrate that the MamBo-3-Hydra-N3 configuration achieves competitive performance compared to other state-of-the-art systems on the ASVspoof 2021 LA, DF, and In-the-Wild benchmarks. This performance benefits from Hydra's native bidirectional modeling, which captures holistic temporal dependencies more efficiently than the heuristic dual-branch strategies employed in prior works. Furthermore, evaluations on the DFADD dataset demonstrate robust generalization to unseen diffusion- and flow-matching-based synthesis methods. Crucially, our analysis reveals that scaling backbone depth effectively mitigates the performance variance and instability observed in shallower models. These results demonstrate the hybrid framework's ability to capture artifacts in spoofed speech signals, providing an effective method for ADD.
Face Presentation Attack Detection (PAD) demands incremental learning (IL) to combat evolving spoofing tactics and domains. Privacy regulations, however, forbid retaining past data, necessitating rehearsal-free IL (RF-IL). Vision-Language Pre-trained (VLP) models, with their prompt-tunable cross-modal representations, enable efficient adaptation to new spoofing styles and domains. Capitalizing on this strength, we propose \textbf{SVLP-IL}, a VLP-based RF-IL framework that balances stability and plasticity via \textit{Multi-Aspect Prompting} (MAP) and \textit{Selective Elastic Weight Consolidation} (SEWC). MAP isolates domain dependencies, enhances distribution-shift sensitivity, and mitigates forgetting by jointly exploiting universal and domain-specific cues. SEWC selectively preserves critical weights from previous tasks, retaining essential knowledge while allowing flexibility for new adaptations. Comprehensive experiments across multiple PAD benchmarks show that SVLP-IL significantly reduces catastrophic forgetting and enhances performance on unseen domains. SVLP-IL offers a privacy-compliant, practical solution for robust lifelong PAD deployment in RF-IL settings.