Abstract:Advanced speech synthesis technologies have enabled highly realistic speech generation, posing security risks that motivate research into audio deepfake detection (ADD). While state space models (SSMs) offer linear complexity, pure causal SSMs architectures often struggle with the content-based retrieval required to capture global frequency-domain artifacts. To address this, we explore the scaling properties of hybrid architectures by proposing XLSR-MamBo, a modular framework integrating an XLSR front-end with synergistic Mamba-Attention backbones. We systematically evaluate four topological designs using advanced SSM variants, Mamba, Mamba2, Hydra, and Gated DeltaNet. Experimental results demonstrate that the MamBo-3-Hydra-N3 configuration achieves competitive performance compared to other state-of-the-art systems on the ASVspoof 2021 LA, DF, and In-the-Wild benchmarks. This performance benefits from Hydra's native bidirectional modeling, which captures holistic temporal dependencies more efficiently than the heuristic dual-branch strategies employed in prior works. Furthermore, evaluations on the DFADD dataset demonstrate robust generalization to unseen diffusion- and flow-matching-based synthesis methods. Crucially, our analysis reveals that scaling backbone depth effectively mitigates the performance variance and instability observed in shallower models. These results demonstrate the hybrid framework's ability to capture artifacts in spoofed speech signals, providing an effective method for ADD.




Abstract:Face recognition systems store face templates for efficient matching. Once leaked, these templates pose a threat: inverting them can yield photorealistic surrogates that compromise privacy and enable impersonation. Although existing research has achieved relatively realistic face template inversion, the reconstructed facial images exhibit over-smoothed facial-part attributes (eyes, nose, mouth) and limited transferability. To address this problem, we present CLIP-FTI, a CLIP-driven fine-grained attribute conditioning framework for face template inversion. Our core idea is to use the CLIP model to obtain the semantic embeddings of facial features, in order to realize the reconstruction of specific facial feature attributes. Specifically, facial feature attribute embeddings extracted from CLIP are fused with the leaked template via a cross-modal feature interaction network and projected into the intermediate latent space of a pretrained StyleGAN. The StyleGAN generator then synthesizes face images with the same identity as the templates but with more fine-grained facial feature attributes. Experiments across multiple face recognition backbones and datasets show that our reconstructions (i) achieve higher identification accuracy and attribute similarity, (ii) recover sharper component-level attribute semantics, and (iii) improve cross-model attack transferability compared to prior reconstruction attacks. To the best of our knowledge, ours is the first method to use additional information besides the face template attack to realize face template inversion and obtains SOTA results.
Abstract:The proliferation of sophisticated deepfakes poses significant threats to information integrity. While DINOv2 shows promise for detection, existing fine-tuning approaches treat it as generic binary classification, overlooking distinct artifacts inherent to different deepfake methods. To address this, we propose a DeepFake Fine-Grained Adapter (DFF-Adapter) for DINOv2. Our method incorporates lightweight multi-head LoRA modules into every transformer block, enabling efficient backbone adaptation. DFF-Adapter simultaneously addresses authenticity detection and fine-grained manipulation type classification, where classifying forgery methods enhances artifact sensitivity. We introduce a shared branch propagating fine-grained manipulation cues to the authenticity head. This enables multi-task cooperative optimization, explicitly enhancing authenticity discrimination with manipulation-specific knowledge. Utilizing only 3.5M trainable parameters, our parameter-efficient approach achieves detection accuracy comparable to or even surpassing that of current complex state-of-the-art methods.
Abstract:Current vision-language models (VLMs) have demonstrated remarkable capabilities in understanding multimodal data, but their potential remains underexplored for deepfake detection due to the misaligned of their knowledge and forensics patterns. To this end, we present a novel paradigm that unlocks VLMs' potential capabilities through three components: (1) A knowledge-guided forgery adaptation module that aligns VLM's semantic space with forensic features through contrastive learning with external manipulation knowledge; (2) A multi-modal prompt tuning framework that jointly optimizes visual-textual embeddings for both localization and explainability; (3) An iterative refinement strategy enabling multi-turn dialog for evidence-based reasoning. Our framework includes a VLM-based Knowledge-guided Forgery Detector (KFD), a VLM image encoder, and a Large Language Model (LLM). The VLM image encoder extracts visual prompt embeddings from images, while the LLM receives visual and question prompt embeddings for inference. The KFD is used to calculate correlations between image features and pristine/deepfake class embeddings, enabling forgery classification and localization. The outputs from these components are used to construct forgery prompt embeddings. Finally, we feed these prompt embeddings into the LLM to generate textual detection responses to assist judgment. Extensive experiments on multiple benchmarks, including FF++, CDF2, DFD, DFDCP, and DFDC, demonstrate that our scheme surpasses state-of-the-art methods in generalization performance, while also supporting multi-turn dialogue capabilities.
Abstract:Recent advances in deepfake forensics have primarily focused on improving the classification accuracy and generalization performance. Despite enormous progress in detection accuracy across a wide variety of forgery algorithms, existing algorithms lack intuitive interpretability and identity traceability to help with forensic investigation. In this paper, we introduce a novel DeepFake Identity Recovery scheme (DFREC) to fill this gap. DFREC aims to recover the pair of source and target faces from a deepfake image to facilitate deepfake identity tracing and reduce the risk of deepfake attack. It comprises three key components: an Identity Segmentation Module (ISM), a Source Identity Reconstruction Module (SIRM), and a Target Identity Reconstruction Module (TIRM). The ISM segments the input face into distinct source and target face information, and the SIRM reconstructs the source face and extracts latent target identity features with the segmented source information. The background context and latent target identity features are synergetically fused by a Masked Autoencoder in the TIRM to reconstruct the target face. We evaluate DFREC on six different high-fidelity face-swapping attacks on FaceForensics++, CelebaMegaFS and FFHQ-E4S datasets, which demonstrate its superior recovery performance over state-of-the-art deepfake recovery algorithms. In addition, DFREC is the only scheme that can recover both pristine source and target faces directly from the forgery image with high fadelity.




Abstract:Developing robust and interpretable vision systems is a crucial step towards trustworthy artificial intelligence. In this regard, a promising paradigm considers embedding task-required invariant structures, e.g., geometric invariance, in the fundamental image representation. However, such invariant representations typically exhibit limited discriminability, limiting their applications in larger-scale trustworthy vision tasks. For this open problem, we conduct a systematic investigation of hierarchical invariance, exploring this topic from theoretical, practical, and application perspectives. At the theoretical level, we show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture yet in a fully interpretable manner. The general blueprint, specific definitions, invariant properties, and numerical implementations are provided. At the practical level, we discuss how to customize this theoretical framework into a given task. With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner. We demonstrate the above arguments with accuracy, invariance, and efficiency results on texture, digit, and parasite classification experiments. Furthermore, at the application level, our representations are explored in real-world forensics tasks on adversarial perturbations and Artificial Intelligence Generated Content (AIGC). Such applications reveal that the proposed strategy not only realizes the theoretically promised invariance, but also exhibits competitive discriminability even in the era of deep learning. For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
Abstract:In recent years, there has been significant growth in the commercial applications of generative models, licensed and distributed by model developers to users, who in turn use them to offer services. In this scenario, there is a need to track and identify the responsible user in the presence of a violation of the license agreement or any kind of malicious usage. Although there are methods enabling Generative Adversarial Networks (GANs) to include invisible watermarks in the images they produce, generating a model with a different watermark, referred to as a fingerprint, for each user is time- and resource-consuming due to the need to retrain the model to include the desired fingerprint. In this paper, we propose a retraining-free GAN fingerprinting method that allows model developers to easily generate model copies with the same functionality but different fingerprints. The generator is modified by inserting additional Personalized Normalization (PN) layers whose parameters (scaling and bias) are generated by two dedicated shallow networks (ParamGen Nets) taking the fingerprint as input. A watermark decoder is trained simultaneously to extract the fingerprint from the generated images. The proposed method can embed different fingerprints inside the GAN by just changing the input of the ParamGen Nets and performing a feedforward pass, without finetuning or retraining. The performance of the proposed method in terms of robustness against both model-level and image-level attacks is also superior to the state-of-the-art.




Abstract:We propose a novel multi-bit box-free watermarking method for the protection of Intellectual Property Rights (IPR) of GANs with improved robustness against white-box attacks like fine-tuning, pruning, quantization, and surrogate model attacks. The watermark is embedded by adding an extra watermarking loss term during GAN training, ensuring that the images generated by the GAN contain an invisible watermark that can be retrieved by a pre-trained watermark decoder. In order to improve the robustness against white-box model-level attacks, we make sure that the model converges to a wide flat minimum of the watermarking loss term, in such a way that any modification of the model parameters does not erase the watermark. To do so, we add random noise vectors to the parameters of the generator and require that the watermarking loss term is as invariant as possible with respect to the presence of noise. This procedure forces the generator to converge to a wide flat minimum of the watermarking loss. The proposed method is architectureand dataset-agnostic, thus being applicable to many different generation tasks and models, as well as to CNN-based image processing architectures. We present the results of extensive experiments showing that the presence of the watermark has a negligible impact on the quality of the generated images, and proving the superior robustness of the watermark against model modification and surrogate model attacks.




Abstract:The powerful ability of ChatGPT has caused widespread concern in the academic community. Malicious users could synthesize dummy academic content through ChatGPT, which is extremely harmful to academic rigor and originality. The need to develop ChatGPT-written content detection algorithms call for large-scale datasets. In this paper, we initially investigate the possible negative impact of ChatGPT on academia,and present a large-scale CHatGPT-writtEn AbsTract dataset (CHEAT) to support the development of detection algorithms. In particular, the ChatGPT-written abstract dataset contains 35,304 synthetic abstracts, with Generation, Polish, and Mix as prominent representatives. Based on these data, we perform a thorough analysis of the existing text synthesis detection algorithms. We show that ChatGPT-written abstracts are detectable, while the detection difficulty increases with human involvement.
Abstract:Generalizability to unseen forgery types is crucial for face forgery detectors. Recent works have made significant progress in terms of generalization by synthetic forgery data augmentation. In this work, we explore another path for improving the generalization. Our goal is to reduce the features that are easy to learn in the training phase, so as to reduce the risk of overfitting on specific forgery types. Specifically, in our method, a teacher network takes as input the face images and generates an attention map of the deep features by a diverse multihead attention ViT. The attention map is used to guide a student network to focus on the low-attended features by reducing the highly-attended deep features. A deep feature mixup strategy is also proposed to synthesize forgeries in the feature domain. Experiments demonstrate that, without data augmentation, our method is able to achieve promising performances on unseen forgeries and highly compressed data.