Abstract:Recent advances in deepfake forensics have primarily focused on improving the classification accuracy and generalization performance. Despite enormous progress in detection accuracy across a wide variety of forgery algorithms, existing algorithms lack intuitive interpretability and identity traceability to help with forensic investigation. In this paper, we introduce a novel DeepFake Identity Recovery scheme (DFREC) to fill this gap. DFREC aims to recover the pair of source and target faces from a deepfake image to facilitate deepfake identity tracing and reduce the risk of deepfake attack. It comprises three key components: an Identity Segmentation Module (ISM), a Source Identity Reconstruction Module (SIRM), and a Target Identity Reconstruction Module (TIRM). The ISM segments the input face into distinct source and target face information, and the SIRM reconstructs the source face and extracts latent target identity features with the segmented source information. The background context and latent target identity features are synergetically fused by a Masked Autoencoder in the TIRM to reconstruct the target face. We evaluate DFREC on six different high-fidelity face-swapping attacks on FaceForensics++, CelebaMegaFS and FFHQ-E4S datasets, which demonstrate its superior recovery performance over state-of-the-art deepfake recovery algorithms. In addition, DFREC is the only scheme that can recover both pristine source and target faces directly from the forgery image with high fadelity.
Abstract:Deep learning algorithms have become an essential component in the field of cognitive radio, especially playing a pivotal role in automatic modulation classification. However, Deep learning also present risks and vulnerabilities. Despite their outstanding classification performance, they exhibit fragility when confronted with meticulously crafted adversarial examples, posing potential risks to the reliability of modulation recognition results. Addressing this issue, this letter pioneers the development of an intelligent modulation classification framework based on conformal theory, named the Conformal Shield, aimed at detecting the presence of adversarial examples in unknown signals and assessing the reliability of recognition results. Utilizing conformal mapping from statistical learning theory, introduces a custom-designed Inconsistency Soft-solution Set, enabling multiple validity assessments of the recognition outcomes. Experimental results demonstrate that the Conformal Shield maintains robust detection performance against a variety of typical adversarial sample attacks in the received signals under different perturbation-to-signal power ratio conditions.