Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
This work studies electrocardiogram (ECG) biometrics at large scale, directly addressing a critical gap in the literature: the scarcity of large-scale evaluations with operational metrics and protocols that enable meaningful standardization and comparison across studies. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, establishing a strong baseline before waveform modeling. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a clear performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53\% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-$K$ shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature and that large-scale testing is essential to obtain realistic, comparable metrics. The study provides an operationally grounded benchmark that helps standardize evaluation across protocols.
Electrocardiography (ECG) serves as an indispensable diagnostic tool in clinical practice, yet existing multimodal large language models (MLLMs) remain unreliable for ECG interpretation, often producing plausible but clinically incorrect analyses. To address this, we propose ECG-R1, the first reasoning MLLM designed for reliable ECG interpretation via three innovations. First, we construct the interpretation corpus using \textit{Protocol-Guided Instruction Data Generation}, grounding interpretation in measurable ECG features and monograph-defined quantitative thresholds and diagnostic logic. Second, we present a modality-decoupled architecture with \textit{Interleaved Modality Dropout} to improve robustness and cross-modal consistency when either the ECG signal or ECG image is missing. Third, we present \textit{Reinforcement Learning with ECG Diagnostic Evidence Rewards} to strengthen evidence-grounded ECG interpretation. Additionally, we systematically evaluate the ECG interpretation capabilities of proprietary, open-source, and medical MLLMs, and provide the first quantitative evidence that severe hallucinations are widespread, suggesting that the public should not directly trust these outputs without independent verification. Code and data are publicly available at \href{https://github.com/PKUDigitalHealth/ECG-R1}{here}, and an online platform can be accessed at \href{http://ai.heartvoice.com.cn/ECG-R1/}{here}.
Prenatal psychological stress affects 15-25% of pregnancies and increases risks of preterm birth, low birth weight, and adverse neurodevelopmental outcomes. Current screening relies on subjective questionnaires (PSS-10), limiting continuous monitoring. We developed deep learning models for stress detection from electrocardiography (ECG) using the FELICITy 1 cohort (151 pregnant women, 32-38 weeks gestation). A ResNet-34 encoder was pretrained via SimCLR contrastive learning on 40,692 ECG segments per subject. Multi-layer feature extraction enabled binary classification and continuous PSS prediction across maternal (mECG), fetal (fECG), and abdominal ECG (aECG). External validation used the FELICITy 2 RCT (28 subjects, different ECG device, yoga intervention vs. control). On FELICITy 1 (5-fold CV): mECG 98.6% accuracy (R2=0.88, MAE=1.90), fECG 99.8% (R2=0.95, MAE=1.19), aECG 95.5% (R2=0.75, MAE=2.80). External validation on FELICITy 2: mECG 77.3% accuracy (R2=0.62, MAE=3.54, AUC=0.826), aECG 63.6% (R2=0.29, AUC=0.705). Signal quality-based channel selection outperformed all-channel averaging (+12% R2 improvement). Mixed-effects models detected a significant intervention response (p=0.041). Self-supervised deep learning on pregnancy ECG enables accurate, objective stress assessment, with multi-layer feature extraction substantially outperforming single embedding approaches.
This work studies electrocardiogram (ECG) biometrics at large scale, evaluating how strongly an ECG can be linked to an individual and, consequently, how its anonymization may be compromised. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, indicating that anonymization based solely on releasing features does not guarantee privacy. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-K shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature: re-identification is already possible with tabular features and is further amplified by embedding-based models, making privacy implications and realistic operational protocols essential to consider.
Machine learning (ML) in medicine has transitioned from research to concrete applications aimed at supporting several medical purposes like therapy selection, monitoring and treatment. Acceptance and effective adoption by clinicians and patients, as well as regulatory approval, require evidence of trustworthiness. A major factor for the development of trustworthy AI is the quantification of data quality for AI model training and testing. We have recently proposed the METRIC-framework for systematically evaluating the suitability (fit-for-purpose) of data for medical ML for a given task. Here, we operationalize this theoretical framework by introducing a collection of data quality metrics - the metric library - for practically measuring data quality dimensions. For each metric, we provide a metric card with the most important information, including definition, applicability, examples, pitfalls and recommendations, to support the understanding and implementation of these metrics. Furthermore, we discuss strategies and provide decision trees for choosing an appropriate set of data quality metrics from the metric library given specific use cases. We demonstrate the impact of our approach exemplarily on the PTB-XL ECG-dataset. This is a first step to enable fit-for-purpose evaluation of training and test data in practice as the base for establishing trustworthy AI in medicine.
The electrocardiogram (ECG) is a cost-effective, highly accessible and widely employed diagnostic tool. With the advent of Foundation Models (FMs), the field of AI-assisted ECG interpretation has begun to evolve, as they enable model reuse across different tasks by relying on embeddings. However, to responsibly employ FMs, it is crucial to rigorously assess to which extent the embeddings they produce are generalizable, particularly in error-sensitive domains such as healthcare. Although prior works have already addressed the problem of benchmarking ECG-expert FMs, they focus predominantly on the evaluation of downstream performance. To fill this gap, this study aims to find an in-depth, comprehensive benchmarking framework for FMs, with a specific focus on ECG-expert ones. To this aim, we introduce a benchmark methodology that complements performance-based evaluation with representation-level analysis, leveraging SHAP and UMAP techniques. Furthermore, we rely on the methodology for carrying out an extensive evaluation of several ECG-expert FMs pretrained via state-of-the-art techniques over different cross-continental datasets and data availability settings; this includes ones featuring data scarcity, a fairly common situation in real-world medical scenarios. Experimental results show that our benchmarking protocol provides a rich insight of ECG-expert FMs' embedded patterns, enabling a deeper understanding of their representational structure and generalizability.
Cardiac Magnetic Resonance (CMR) imaging provides a comprehensive assessment of cardiac structure and function but remains constrained by high acquisition costs and reliance on expert annotations, limiting the availability of large-scale labeled datasets. In contrast, electrocardiograms (ECGs) are inexpensive, widely accessible, and offer a promising modality for conditioning the generative synthesis of cine CMR. To this end, we propose ECGFlowCMR, a novel ECG-to-CMR generative framework that integrates a Phase-Aware Masked Autoencoder (PA-MAE) and an Anatomy-Motion Disentangled Flow (AMDF) to address two fundamental challenges: (1) the cross-modal temporal mismatch between multi-beat ECG recordings and single-cycle CMR sequences, and (2) the anatomical observability gap due to the limited structural information inherent in ECGs. Extensive experiments on the UK Biobank and a proprietary clinical dataset demonstrate that ECGFlowCMR can generate realistic cine CMR sequences from ECG inputs, enabling scalable pretraining and improving performance on downstream cardiac disease classification and phenotype prediction tasks.
Recent advances in Multimodal Large Language Models have rapidly expanded to electrocardiograms, focusing on classification, report generation, and single-turn QA tasks. However, these models fall short in real-world scenarios, lacking multi-turn conversational ability, on-device efficiency, and precise understanding of ECG measurements such as the PQRST intervals. To address these limitations, we introduce ECG-Agent, the first LLM-based tool-calling agent for multi-turn ECG dialogue. To facilitate its development and evaluation, we also present ECG-Multi-Turn-Dialogue (ECG-MTD) dataset, a collection of realistic user-assistant multi-turn dialogues for diverse ECG lead configurations. We develop ECG-Agents in various sizes, from on-device capable to larger agents. Experimental results show that ECG-Agents outperform baseline ECG-LLMs in response accuracy. Furthermore, on-device agents achieve comparable performance to larger agents in various evaluations that assess response accuracy, tool-calling ability, and hallucinations, demonstrating their viability for real-world applications.
High-performance room-temperature sensing is often limited by non-stationary $1/f$ fluctuations and non-Gaussian stochasticity. In spintronic devices, thermally activated Néel switching creates heavy-tailed noise that masks weak signals, defeating linear filters optimized for Gaussian statistics. Here, we introduce a physics-integrated inference framework that decouples signal morphology from stochastic transients using a hierarchical 1D CNN-GRU topology. By learning the temporal signatures of Néel relaxation, this architecture reduces the Noise Equivalent Differential Temperature (NEDT) of spintronic Poisson bolometers by a factor of six (233.78 mK to 40.44 mK), effectively elevating room-temperature sensitivity toward cryogenic limits. We demonstrate the framework's universality across the electromagnetic and biological spectrum, achieving a 9-fold error suppression in Radar tracking, a 40\% uncertainty reduction in LiDAR, and a 15.56 dB SNR enhancement in ECG. This hardware-inference coupling recovers deterministic signals from fluctuation-dominated regimes, enabling near-ideal detection limits in noisy edge environments.